391 research outputs found

    Understanding the impact of crop and food production on the water environment ‐using sugar as a model

    Get PDF
    The availability of fresh water and the quality of aquatic ecosystems are important global concerns, and agriculture plays a major role. Consumers and manufacturers are increasingly sensitive to sustainability issues related to processed food products and drinks. The present study examines the production of sugar from the growing cycle through to processing to the factory gate, and identifies the potential impacts on water scarcity and quality and the ways in which the impact of water use can be minimised. We have reviewed the production phases and processing steps, and how calculations of water use can be complicated, or in some cases how assessments can be relatively straightforward. Finally, we outline several ways that growers and sugar processors are improving the efficiency of water use and reducing environmental impact, and where further advances can be made. This provides a template for the assessment of other crops

    Exploring the dual role of B cells in solid tumors: implications for head and neck squamous cell carcinoma

    Get PDF
    In the tumor milieu of head and neck squamous cell carcinoma (HNSCC), distinct B cell subpopulations are present, which exert either pro- or anti-tumor activities. Multiple factors, including hypoxia, cytokines, interactions with tumor cells, and other immune infiltrating lymphocytes (TILs), alter the equilibrium between the dual roles of B cells leading to cancerogenesis. Certain B cell subsets in the tumor microenvironment (TME) exhibit immunosuppressive function. These cells are known as regulatory B (Breg) cells. Breg cells suppress immune responses by secreting a series of immunosuppressive cytokines, including IL-10, IL-35, TGF-β, granzyme B, and adenosine or dampen effector TILs by intercellular contacts. Multiple Breg phenotypes have been discovered in human and mouse cancer models. However, when compartmentalized within a tertiary lymphoid structure (TLS), B cells predominantly play anti-tumor effects. A mature TLS contains a CD20+ B cell zone with several important types of B cells, including germinal-center like B cells, antibody-secreting plasma cells, and memory B cells. They kill tumor cells via antibody-dependent cytotoxicity and phagocytosis, and local complement activation effects. TLSs are also privileged sites for local T and B cell coordination and activation. Nonetheless, in some cases, TLSs may serve as a niche for hidden tumor cells and indicate a bad prognosis. Thus, TIL-B cells exhibit bidirectional immune-modulatory activity and are responsive to a variety of immunotherapies. In this review, we discuss the functional distinctions between immunosuppressive Breg cells and immunogenic effector B cells that mature within TLSs with the focus on tumors of HNSCC patients. Additionally, we review contemporary immunotherapies that aim to target TIL-B cells. For the development of innovative therapeutic approaches to complement T-cell-based immunotherapy, a full understanding of either effector B cells or Breg cells is necessary

    The receptor RAGE: Bridging inflammation and cancer

    Get PDF
    The receptor for advanced glycation end products (RAGE) is a single transmembrane receptor of the immunoglobulin superfamily that is mainly expressed on immune cells, neurons, activated endothelial and vascular smooth muscle cells, bone forming cells, and a variety of cancer cells. RAGE is a multifunctional receptor that binds a broad repertoire of ligands and mediates responses to cell damage and stress conditions. It activates programs responsible for acute and chronic inflammation, and is implicated in a number of pathological diseases, including diabetic complications, stroke, atheriosclerosis, arthritis, and neurodegenerative disorders. The availability of Rage knockout mice has not only advanced our knowledge on signalling pathways within these pathophysiological conditions, but also on the functional importance of the receptor in processes of cancer. Here, we will summarize molecular mechanisms through which RAGE signalling contributes to the establishment of a pro-tumourigenic microenvironment. Moreover, we will review recent findings that provide genetic evidence for an important role of RAGE in bridging inflammation and cancer

    A 3′UTR polymorphism modulates mRNA stability of the oncogene and drug target Polo-like Kinase 1

    Get PDF
    BACKGROUND: The Polo-like Kinase 1 (PLK1) protein regulates cell cycle progression and is overexpressed in many malignant tissues. Overexpression is associated with poor prognosis in several cancer entities, whereby expression of PLK1 shows high inter-individual variability. Although PLK1 is extensively studied, not much is known about the genetic variability of the PLK1 gene. The function of PLK1 and the expression of the corresponding gene could be influenced by genomic variations. Hence, we investigated the gene for functional polymorphisms. Such polymorphisms could be useful to investigate whether PLK1 alters the risk for and the course of cancer and they could have an impact on the response to PLK1 inhibitors. METHODS: The coding region, the 5′ and 3′UTRs and the regulatory regions of PLK1 were systematically sequenced. We determined the allele frequencies and genotype distributions of putatively functional SNPs in 120 Caucasians and analyzed the linkage and haplotype structure using Haploview. The functional analysis included electrophoretic mobility shift assay (EMSA) for detected variants of the silencer and promoter regions and reporter assays for a 3′UTR polymorphism. RESULTS: Four putatively functional polymorphisms were detected and further analyzed, one in the silencer region (rs57973275), one in the core promoter region (rs16972787), one in intron 3 (rs40076) and one polymorphism in the 3′untranslated region (3′UTR) of PLK1 (rs27770). Alleles of rs27770 display different secondary mRNA structures and showed a distinct allele-dependent difference in mRNA stability with a significantly higher reporter activity of the A allele (p < 0.01). CONCLUSION: The present study provides evidence that at least one genomic variant of PLK1 has functional properties and influences expression of PLK1. This suggests polymorphisms of the PLK1 gene as an interesting target for further studies that might affect cancer risk, tumor progression as well as the response to PLK1 inhibitors

    Prognostic Gene Signature for Squamous Cell Carcinoma with a Higher Risk for Treatment Failure and Accelerated MEK-ERK Pathway Activity

    Get PDF
    Squamous cell carcinoma (SCC) is the most prevalent histological type of human cancer, including head and neck squamous cell carcinoma (HNSCC). However, reliable prognostic gene signatures for SCC and underlying genetic and/or epigenetic principles are still unclear. We identified 37 prognostic candidate genes by best cutoff computation based on survival in a pan-SCC cohort (n = 1334) of The Cancer Genome Atlas (TCGA), whose expression stratified not only the pan-SCC cohort but also independent HNSCC validation cohorts into three distinct prognostic subgroups. The most relevant prognostic genes were prioritized by a Least Absolute Shrinkage and Selection Operator Cox regression model and were used to identify subgroups with high or low risks for unfavorable survival. An integrative analysis of multi-omics data identified FN1, SEMA3A, CDH2, FBN1, COL5A1, and ADAM12 as key nodes in a regulatory network related to the prognostic phenotype. An in-silico drug screen predicted two MEK inhibitors (Trametinib and Selumetinib) as effective compounds for high-risk SCC based on the Cancer Cell Line Encyclopedia, which is supported by a higher p-MEK1/2 immunohistochemical staining of high-risk HNSCC. In conclusion, our data identified a molecular classifier for high-risk HNSCC as well as other SCC patients, who might benefit from treatment with MEK inhibitors

    Dynamic Up-Regulation of PD-L1 in the Progression of Oral Squamous Cell Carcinoma

    Get PDF
    The introduction of immune checkpoint inhibition for recurrent and metastatic head and neck cancer has brought a new treatment option for patients suffering from advanced oral cancers without a chance for curation using surgery or radiotherapy. The application of immune checkpoint inhibitors in most cases is based on the expression levels of PD-L1 in the tumor tissue. To date, there is a lack of data on the dynamic regulation of PD-L1 during disease progression. Therefore, this study aimed to evaluate the expression levels of PD-L1 in a large cohort of patients (n = 222) with oral squamous cell carcinoma including primary and recurrent tumors. Semiautomatic digital pathology scoring was used for the assessment of PD-L1 expression levels in primary and recurrent oral squamous cell carcinoma. Survival analysis was performed to evaluate the prognostic significance of the protein expression at different stages of the disease. We found a significant up-regulation of PD-L1 expression from primary disease to recurrent tumors (mean PD-L1 H-scores: primary tumors: 47.1 ± 31.4; recurrent tumors: 103.5 ± 62.8, p < 0.001). In several cases, a shift from low PD-L1 expression in primary tumors to high PD-L1 expression in recurrent tumors was identified. Multivariate Cox regression analysis did not reveal a significantly higher risk of death (p = 0.078) or recurrence (p = 0.926) in patients with higher PD-L1 expression. Our findings indicate that the exclusive analysis of primary tumor tissue prior to the application of checkpoint blockade may lead to the misjudgment of PD-L1 expression in recurrent tumors

    EGFR and PI3K Pathway Activities Might Guide Drug Repurposing in HPV-Negative Head and Neck Cancers

    Get PDF
    While genetic alterations in Epidermal growth factor receptor (EGFR) and PI3K are common in head and neck squamous cell carcinomas (HNSCC), their impact on oncogenic signaling and cancer drug sensitivities remains elusive. To determine their consequences on the transcriptional network, pathway activities of EGFR, PI3K, and 12 additional oncogenic pathways were inferred in 498 HNSCC samples of The Cancer Genome Atlas using PROGENy. More than half of HPV-negative HNSCC showed a pathway activation in EGFR or PI3K. An amplification in EGFR and a mutation in PI3KCA resulted in a significantly higher activity of the respective pathway (p = 0.017 and p = 0.007). Interestingly, both pathway activations could only be explained by genetic alterations in less than 25% of cases indicating additional molecular events involved in the downstream signaling. Suitable in vitro pathway models could be identified in a published drug screen of 45 HPV-negative HNSCC cell lines. An active EGFR pathway was predictive for the response to the PI3K inhibitor buparlisib (p = 6.36E-03) and an inactive EGFR and PI3K pathway was associated with efficacy of the B-cell lymphoma (BCL) inhibitor navitoclax (p = 9.26E-03). In addition, an inactive PI3K pathway correlated with a response to multiple Histone deacetylase inhibitor (HDAC) inhibitors. These findings require validation in preclinical models and clinical studies

    scMAR-Seq: a novel workflow for targeted single-cell genomics of microorganisms using radioactive labeling

    Get PDF
    Current methods for the identification of specific microorganisms based on an in situ metabolism are often hampered by insufficient sensitivity and habitat complexity. Here, we present a novel approach for identifying and sequencing single microbial cells metabolizing a specific organic compound with high sensitivity and without prior knowledge of the microbial community. The workflow consists of labeling individual cells with a [14^{14}C] substrate based on their metabolic activity, followed by encapsulating cells in alginate with nuclear emulsion by using microfluidics. We here adapted the concept of microautoradiography to visually distinguish between encapsulated labeled and non-labeled cells, which are then sorted via flow cytometry for single cell genomics. As a proof-of-concept, we labeled, separated, lysed, and sequenced single cells of the benzene degrader Pseudomonas veronii from mock microbial communities. The cells of P. veronii were isolated with 100% specificity. Single-cell microautoradiography and genome sequencing is an innovative method for elucidating microbial identity, activity, and function in diverse habitats, contributing to elucidate novel taxa and genes with potential for biotechnological applications such as bioremediation

    Expression of Kallikrein-related peptidase 6 in primary mucosal malignant melanoma of the head and neck

    Get PDF
    Mucosal melanomas of the head and neck (MMHN) are aggressive tumors with poor prognosis, different opposed to cutaneous melanoma. In this study, we characterized primary mucosal malignant melanoma for the expression of Kallikrein-related peptidase 6 (KLK6), a member of the KLK family with relevance to the malignant phenotype in various cancer types including cutaneous melanoma. Paraffin-embedded MMHN of 22 patients were stained immunohistochemically for KLK6 and results were correlated with clinical and pathological data. In 77.3% (17/22) of MMHN cases, positive KLK6 staining was found. Staining pattern for tumor cells showed a predominant cytoplasmic staining. However, in six cases we also observed a prominent nuclear staining. MMHN with a high KLK6 expression showed significantly better outcome concerning local recurrence-free survival (p = 0.013) and nuclear KLK6 staining was significantly associated with the survival status (p = 0.027). Overexpression of KLK6 was detected in more than 70% of MMHN and approximately 40% of tumors showed a strong expression pattern. Correlation between clinical outcome of MMHN patients and overexpression of KLK6 has not been addressed so far. Our data demonstrate for the first time increased levels of KLK6 in MMHN and strengthen the hypothesis that there might be a context-specific regulation and function of KLK6 in mucosal melanoma
    corecore