7 research outputs found

    Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum.

    Get PDF
    Panicum miliaceum (broomcorn millet) is a tetraploid cereal, which was among the first domesticated crops, but is now a minor crop despite its high water use efficiency. The ancestors of this species have not been determined; we aimed to identify likely candidates within the genus, where phylogenies are poorly resolved. Nuclear and chloroplast DNA sequences from P. miliaceum and a range of diploid and tetraploid relatives were used to develop phylogenies of the diploid and tetraploid species. Chromosomal in situ hybridization with genomic DNA as a probe was used to characterize the genomes in the tetraploid P. miliaceum and a tetraploid accession of P. repens. In situ hybridization showed that half the chromosomes of P. miliaceum hybridized more strongly with labelled genomic DNA from P. capillare, and half with labelled DNA from P. repens. Genomic DNA probes differentiated two sets of 18 chromosomes in the tetraploid P. repens. Our phylogenetic data support the allotetraploid origin of P. miliaceum, with the maternal ancestor being P. capillare (or a close relative) and the other genome being shared with P. repens. Our P. repens accession was also an allotetraploid with two dissimilar but closely related genomes, the maternal genome being similar to P. sumatrense. Further collection of Panicum species, particularly from the Old World, is required. It is important to identify why the water-efficient P. miliaceum is now of minimal importance in agriculture, and it may be valuable to exploit the diversity in this species and its ancestors

    Oat chromosome and genome evolution defined by widespread terminal intergenomic translocations in polyploids

    No full text
    Structural chromosome rearrangements involving translocations, fusions and fissions lead to evolutionary variation between species and potentially reproductive isolation and variation in gene expression. While the wheats (Triticeae, Poaceae) and oats (Aveneae) all maintain a basic chromosome number of x=7, genomes of oats show frequent intergenomic translocations, in contrast to wheats where these translocations are relatively rare. We aimed to show genome structural diversity and genome relationships in tetraploid, hexaploid and octoploid Avena species and amphiploids, establishing patterns of intergenomic translocations across different oat taxa using fluorescence in situ hybridization (FISH) with four well-characterized repetitive DNA sequences: pAs120, AF226603, Ast-R171 and Ast-T116. In A. agadiriana (2n=4x=28), the selected probes hybridized to all chromosomes indicating that this species originated from one (autotetraploid) or closely related ancestors with the same genomes. Hexaploid amphiploids were confirmed as having the genomic composition AACCDD, while octoploid amphiploids showed three different genome compositions: AACCCCDD, AAAACCDD or AABBCCDD. The A, B, C, and D genomes of oats differ significantly in their involvement in non-centromeric, intercalary translocations. There was a predominance of distal intergenomic translocations from the C- into the D-genome chromosomes. Translocations from A- to C-, or D- to C-genome chromosomes were less frequent, proving that at least some of the translocations in oat polyploids are non-reciprocal. Rare translocations from A- to D-, D- to A- and C- to B-genome chromosomes were also visualized. The fundamental research has implications for exploiting genomic biodiversity in oat breeding through introgression from wild species potentially with contrasting chromosomal structures and hence deleterious segmental duplications or large deletions in amphiploid parental lines

    Identification of Chromosomes and Chromosome Rearrangements in Crop Brassicas and Raphanus sativus: A Cytogenetic Toolkit Using Synthesized Massive Oligonucleotide Libraries

    No full text
    Crop brassicas include three diploid [Brassica rapa (AA; 2n = 2x = 16), B. nigra (BB; 2n = 2x = 18), and B. oleracea (CC; 2n = 2x = 20)] and three derived allotetraploid species. It is difficult to distinguish Brassica chromosomes as they are small and morphologically similar. We aimed to develop a genome-sequence based cytogenetic toolkit for reproducible identification of Brassica chromosomes and their structural variations. A bioinformatic pipeline was used to extract repeat-free sequences from the whole genome assembly of B. rapa. Identified sequences were subsequently used to develop four c. 47-mer oligonucleotide libraries comprising 27,100, 11,084, 9,291, and 16,312 oligonucleotides. We selected these oligonucleotides after removing repeats from 18 identified sites (500–1,000 kb) with 1,997–5,420 oligonucleotides localized at each site in B. rapa. For one set of probes, a new method for amplification or immortalization of the library is described. oligonucleotide probes produced specific and reproducible in situ hybridization patterns for all chromosomes belonging to A, B, C, and R (Raphanus sativus) genomes. The probes were able to identify structural changes between the genomes, including translocations, fusions, and deletions. Furthermore, the probes were able to identify a structural translocation between a pak choi and turnip cultivar of B. rapa. Overall, the comparative chromosomal mapping helps understand the role of chromosome structural changes during genome evolution and speciation in the family Brassicaceae. The probes can also be used to identify chromosomes in aneuploids such as addition lines used for gene mapping, and to track transfer of chromosomes in hybridization and breeding programs

    Enset in Ethiopia: a poorly characterized but resilient starch staple

    No full text
    BACKGROUND: Enset (Ensete ventricosum, Musaceae) is an African crop that currently provides the staple food for approx. 20 million Ethiopians. Whilst wild enset grows over much of East and Southern Africa and the genus extends across Asia to China, it has only ever been domesticated in the Ethiopian Highlands. Here, smallholder farmers cultivate hundreds of landraces across diverse climatic and agroecological systems. SCOPE: Enset has several important food security traits. It grows over a relatively wide range of conditions, is somewhat drought-tolerant, and can be harvested at any time of the year, over several years. It provides an important dietary starch source, as well as fibres, medicines, animal fodder, roofing and packaging. It stabilizes soils and microclimates and has significant cultural importance. In contrast to the other cultivated species in the family Musaceae (banana), enset has received relatively little research attention. Here, we review and critically evaluate existing research, outline available genomic and germplasm resources, aspects of pathology, and explore avenues for crop development. CONCLUSION: Enset is an underexploited starch crop with significant potential in Ethiopia and beyond. Research is lacking in several key areas: empirical studies on the efficacy of current agronomic practices, the genetic diversity of landraces, approaches to systematic breeding, characterization of existing and emerging diseases, adaptability to new ranges and land-use change, the projected impact of climate change, conservation of crop wild relatives, by-products or co-products or non-starch uses, and the enset microbiome. We also highlight the limited availability of enset germplasm in living collections and seedbanks, and the lack of knowledge of reproductive and germination biology needed to underpin future breeding. By reviewing the current state of the art in enset research and identifying gaps and opportunities, we hope to catalyse the development and sustainable exploitation of this neglected starch crop.status: publishe

    Maintenance and expansion of genetic and trait variation following domestication in a clonal crop

    No full text
    Clonal propagation enables favourable crop genotypes to be rapidly selected and multiplied. However, the absence of sexual propagation can lead to low genetic diversity and accumulation of deleterious mutations, which may eventually render crops less resilient to pathogens or environmental change. To better understand this trade‐off, we characterize the domestication and contemporary genetic diversity of Enset (Ensete ventricosum), an indigenous African relative of bananas (Musa) and a principal starch staple for 20 million Ethiopians. Wild enset reproduction occurs strictly by sexual outcrossing, but for cultivation, it is propagated clonally and associated with diversification and specialization into hundreds of named landraces. We applied tGBS sequencing to generate genome‐wide genotypes for 192 accessions from across enset's cultivated distribution, and surveyed 1340 farmers on enset agronomic traits. Overall, reduced heterozygosity in the domesticated lineage was consistent with a domestication bottleneck that retained 37% of wild diversity. However, an excess of putatively deleterious missense mutations at low frequency present as heterozygotes suggested an accumulation of mutational load in clonal domesticated lineages. Our evidence indicates that the major domesticated lineages initially arose through historic sexual recombination associated with a domestication bottleneck, followed by the amplification of favourable genotypes through an extended period of clonal propagation. Among domesticated lineages, we found a significant phylogenetic signal for multiple farmer‐identified food, nutrition and disease resistance traits and little evidence of contemporary recombination. The development of future‐climate adapted genotypes may require crop breeding, but outcrossing risks exposing deleterious alleles as homozygotes. This trade‐off may partly explain the ubiquity and persistence of clonal propagation over recent centuries of comparative climate stability.</p
    corecore