13 research outputs found

    Integration of Banana Streak Badnavirus into theMusaGenome: Molecular and Cytogenetic Evidence

    Get PDF
    AbstractBreeding and tissue culture of certain cultivars of bananas (Musa) have led to high levels of banana streak badnavirus (BSV) infection in progeny from symptomless parents. BSV DNA hybridized to genomic DNA of one such parent, Obino l'Ewai, suggesting integration of viral sequences. Sequencing of clones of Obino l'Ewai genomic DNA revealed an interface between BSV andMusasequences and a complex BSV integrant.In situhybridization revealed two different BSV sequence locations in Obino l'Ewai chromosomes and a complex arrangement of BSV andMusasequences was shown by probing stretched DNA fibers. This is the first report of integrated sequences that possibly lead to a plant pararetrovirus episomal infection by a mechanism differing markedly from animal retroviral systems

    Flow cytometry-based determination of ploidy from dried leaf specimens in genomically complex collections of the tropical forage grass Urochloa

    Get PDF
    Urochloa (including Brachiaria, Megathyrus and some Panicum) tropical grasses are native to Africa and are now, after selection and breeding, planted worldwide, particularly in South America, as important forages with huge potential for further sustainable improvement and conservation of grasslands. We aimed to develop an optimized approach to determine ploidy of germplasm collection of this tropical forage grass group using dried leaf material, including approaches to collect, dry and preserve plant samples for flow cytometry analysis. Our methods enable robust identification of ploidy levels (coefficient of variation of G0/G1 peaks, CV, typically <5%). Ploidy of some 348 forage grass accessions (ploidy range from 2x to 9x), from international genetic resource collections, showing variation in basic chromosome numbers and reproduction modes (apomixis and sexual), were determined using our defined standard protocol. Two major Urochloa agamic complexes are used in the current breeding programs at CIAT and EMBRAPA: the ’brizantha’ and ’humidicola’ agamic complexes are variable, with multiple ploidy levels. Some U. brizantha accessions have odd level of ploidy (5x), and the relative differences in fluorescence values of the peak positions between adjacent cytotypes is reduced, thus more precise examination of this species is required. Ploidy measurement of U. humidicola revealed aneuploidy

    Repetitive DNA sequences in Crocus vernus Hill (Iridaceae): The genomic organization and distribution of dispersed elements in the genus Crocus and its allies.

    Full text link
    Abstract: Eight clones of repetitive DNA were isolated from Crocus vernus Hill. The genomic organization of the clones was analyzed by in situ hybridization to C. vernus and Southern hybridization to a range of Crocus and other species. Seven clones were used for in situ hybridization. Sequence analysis showed that all eight clones were nonhomologous, and thus represented eight different sequence-families. In situ hybridization showed that six were dispersed in high copy numbers on all chromosomes of the C. vernus genome, whereas one was localized proximal to the secondary constriction, at the NOR (nucleolar organizer region) and was not further analyzed, as it was considered part of the 18S–25S rDNA repeat. Except for short palindromes, none of the sequences showed notable internal structures. Clone pCvKB4 showed homology to the reverse transcriptase gene of Ty1-copia-like retrotransposons; the others showed no homology to known sequences. When used as probes for Southern hybridization, four showed a ladder of 3–4 bands superimposed by irregular patterns, indicating organization in short tandem arrays. Each clone had a unique distribution among Crocus species (12–16 species analyzed with each clone) and six species of Iridaceae, Liliaceae, and Amaryllidaceae; all seven investigated sequences were Iridaceae specific and four were Crocus specific. The species distribution of these seven clones showed notable discrepancies with the taxonomic subdivision of the genus at the subgenus, section, and series levels. The results suggest that the phylogeny and taxonomic structure of the genus Crocus might need reconsideration. The analysis of repetitive DNA as a major and rapidly evolving part of the genome could contribute to the study of species relationships and evolution

    The locatization of mitochondrial sequences to chromosomal DNA in orthopterans.

    Full text link
    There is growing evidence that the integration of mitochondrial DNA sequences into nuclear and chloroplast genomes of higher organisms may be widespread rather than exceptional. We report the localization of 18S–25S rDNA and mitochondrial DNA sequences to meiotic chromosomes of several orthopteran species using in situ hybridisation. The cytochrome oxidase I (COI) sequence localizes to the centromeric and two telomeric regions of the eight bivalents of Chorthippus parallelus, the telomeric regions in Schistocerca gregaria and is present throughout the genome of Italopodisma sp. (Orthoptera: Acrididae). The control region of the mitochondrion and COI localize to similar chromosomal regions in S. gregaria. These data explain sequencing data that are inconsistent with the COI sequence being solely mitochondrial. The different nuclear locations of mtDNA in the different genera studied suggest that grasshopper mtDNA-like sequences have been inserted into the nuclear genome more than once in Acridid history, and there may have been different mechanisms involved when these events occurred in each of these species

    Introgression of rye chromatin on chromosome 2D in the Portuguese wheat landrace 'Barbela'.

    Full text link
    Abstract: The old Portuguese wheat landrace aggregate known as ‘Barbela’ shows good productivity under the lowfertility conditions often associated with acid soils. The use of genomic rye DNA, in combination with 45S rDNA and the repetitive sequences dpTa1 and pSc119.2 as probes, in two sequential in situ hybridization steps enabled the identification of all chromosomes in the ‘Barbela’ wheat lines and the detection of the introgression of rye-origin chromatin onto wheat chromosome arm 2DL in two of the lines. Amplification of microsatellite loci using published primer pairs showed that the distal segment of wheat chromosome 2DL, which was involved in the rye translocation, was deleted. The identification and characterization of small recombinant chromosome segments in wheat–rye lines may allow their use in plant breeding programmes. Their presence in farmer-maintained material demonstrates the importance of maintaining, characterizing, and collecting landrace material before valuable genetic combinations are lost as uniform commercial crops are introduced
    corecore