2,871 research outputs found

    Interface Conformal Anomalies

    Full text link
    We consider two d2d \geq 2 conformal field theories (CFTs) glued together along a codimension one conformal interface. The conformal anomaly of such a system contains both bulk and interface contributions. In a curved-space setup, we compute the heat kernel coefficients and interface central charges in free theories. The results are consistent with the known boundary CFT data via the folding trick. In d=4d=4, two interface invariants generally allowed as anomalies turn out to have vanishing interface charges. These missing invariants are constructed from components with odd parity with respect to flipping the orientation of the defect. We conjecture that all invariants constructed from components with odd parity may have vanishing coefficient for symmetric interfaces, even in the case of interacting interface CFT.Comment: 14 pp; v2: clarifications added, introduction expande

    Quark-Gluon Plasma/Black Hole duality from Gauge/Gravity Correspondence

    Full text link
    The Quark-Gluon Plasma (QGP) is the QCD phase of matter expected to be formed at small proper-times in the collision of heavy-ions at high energy. Experimental observations seem to favor a strongly coupled QCD plasma with the hydrodynamic properties of a quasi-perfect fluid, i.e. rapid thermalization (or isotropization) and small viscosity. The theoretical investigation of such properties is not obvious, due to the the strong coupling. The Gauge/Gravity correspondence provides a stimulating framework to explore the strong coupling regime of gauge theories using the dual string description. After a brief introduction to Gauge/Gravity duality, and among various existing studies, we focus on challenging problems of QGP hydrodynamics, such as viscosity and thermalization, in terms of gravitational duals of both the static and relativistically evolving plasma. We show how a Black Hole geometry arises naturally from the dual properties of a nearly perfect fluid and explore the lessons and prospects one may draw for actual heavy ion collisions from the Gauge/Gravity duality approach.Comment: 6 pages, 4 figures, invited talk at the EPS HEP 2007 Conference, Manchester (UK), and at the ``Deuxiemes rencontres PQG-France'', Etretat (2007); reference adde

    Seiberg Duality is an Exceptional Mutation

    Full text link
    The low energy gauge theory living on D-branes probing a del Pezzo singularity of a non-compact Calabi-Yau manifold is not unique. In fact there is a large equivalence class of such gauge theories related by Seiberg duality. As a step toward characterizing this class, we show that Seiberg duality can be defined consistently as an admissible mutation of a strongly exceptional collection of coherent sheaves.Comment: 32 pages, 4 figures; v2 refs added, "orbifold point" discussion refined; v3 version to appear in JHEP, discussion of torsion sheaves improve

    On the structure of subsets of an orderable group with some small doubling properties

    Full text link
    The aim of this paper is to present a complete description of the structure of subsets S of an orderable group G satisfying |S^2| = 3|S|-2 and is non-abelian

    p-Wave holographic superconductors with Weyl corrections

    Full text link
    We study the (3+1) dimensional p-wave holographic superconductors with Weyl corrections both numerically and analytically. We describe numerically the behavior of critical temperature TcT_{c} with respect to charge density ρ\rho in a limited range of Weyl coupling parameter γ\gamma and we find in general the condensation becomes harder with the increase of parameter γ\gamma. In strong coupling limit of Yang-Mills theory, we show that the minimum value of TcT_{c} obtained from analytical approach is in good agreement with the numerical results, and finally show how we got remarkably a similar result in the critical exponent 1/2 of the chemical potential μ\mu and the order parameter with the numerical curves of superconductors.Comment: 7 pages, 1 figure, 1 table. One refrence added, presentations improve

    Schwinger-Keldysh Propagators from AdS/CFT Correspondence

    Get PDF
    We demonstrate how to compute real-time Green's functions for a class of finite temperature field theories from their AdS gravity duals. In particular, we reproduce the two-by-two Schwinger-Keldysh matrix propagator from a gravity calculation. Our methods should work also for computing higher point Lorentzian signature correlators. We elucidate the boundary condition subtleties which hampered previous efforts to build a Lorentzian-signature AdS/CFT correspondence. For two-point correlators, our construction is automatically equivalent to the previously formulated prescription for the retarded propagator.Comment: 16 pages, 1 figure, references added; to appear in JHE

    The Many Phases of Holographic Superfluids

    Full text link
    We investigate holographic superfluids in AdS_{d+1} with d=3,4 in the non-backreacted approximation for various masses of the scalar field. In d=3 the phase structure is universal for all the masses that we consider: the critical temperature decreases as the superfluid velocity increases, and as it is cranked high enough, the order of the phase transition changes from second to first. Surprisingly, in d=4 we find that the phase structure is more intricate. For sufficiently high mass, there is always a second order phase transition to the normal phase, no matter how high the superfluid velocity. For some parameters, as we lower the temperature, this transition happens before a first order transition to a new superconducting phase. Across this first order transition, the gap in the transverse conductivity jumps from almost zero to about half its maximum value. We also introduce a double scaling limit where we can study the phase transitions (semi-)analytically in the large velocity limit. The results corroborate and complement our numerical results. In d=4, this approach has the virtue of being fully analytically tractable.Comment: 31 pages, 19 figure

    Improved optical phenotyping of the grape berry surface using light-separation and automated RGB image analysis

    Get PDF
    Grape resilience towards Botrytis cinerea (B. cinerea) infections (Botrytis bunch rot) is an important concern of breeders and growers. Beside grape bunch architecture, berry surface characteristics like berry bloom (epicuticular wax) as well as thickness and permeability of the berry cuticle represent further promising physical barriers to increase resilience towards Botrytis bunch rot. In previous studies, two efficient sensor-based phenotyping methods were developed to evaluate both berry surface traits fast and objectively: (1) light-separated RGB (red-green-blue) image analysis to determine the distribution of epicuticular wax on the berry surface; and (2) electrical impedance characteristics of the grape berry cuticle based on point measurements. The present proof-of-concept study aiming at the evaluation of light-separated RGB images for both phenotyping applications, phenotyping wax distribution pattern and berry cuticle impedance values. Within the selected grapevine varieties like 'Riesling', 'Sauvignon Blanc' or 'Calardis Blanc' five contributions were achieved: (1) Both phenotyping approaches were fused into one prototypic unified phenotyping method achieving a wax detection accuracy of 98.6 % and a prediction of electrical impedance with an accuracy of 95 %. (2) Both traits are derived using only light-separated images of the grapevine berries. (3) The improved method allows the detection and quantification of additional surface traits of the grape berry surface such as lenticels (punctual lignification) and the berry stem that are also known as being able to affect the grape susceptibility towards Botrytis. (4) The improved image analysis tools are further integrated into a comprehensive workbench allowing end-users, like breeders to combine phenotyping experiments with transparent data management offering valuable services like visualizations, indexing, etc. (5) Annotation work is supported by a sophisticated annotation tool of the image analysis workbench. The usage of light-separated images enables fast and non-invasive phenotyping of different optical berry surface characteristics, which saves time-consuming labor and additionally allows the reuse of the berry samples for subsequent investigations, e.g. Botrytis infection studies
    corecore