3,013 research outputs found

    Statistical mechanics of temporal association in neural networks with transmission delays

    Get PDF
    We study the representation of static patterns and temporal sequences in neural networks with signal delays and a stochastic parallel dynamics. For a wide class of delay distributions, the asymptotic network behavior can be described by a generalized Gibbs distribution, generated by a novel Lyapunov functional for the determination dynamics. We extend techniques of equilibrium statistical mechanics so as to deal with time-dependent phenomena, derive analytic results for both retrieval quality and storage capacity, and compare them with numerical simulations

    Resolution of Nested Neuronal Representations Can Be Exponential in the Number of Neurons

    Get PDF
    Collective computation is typically polynomial in the number of computational elements, such as transistors or neurons, whether one considers the storage capacity of a memory device or the number of floating-point operations per second of a CPU. However, we show here that the capacity of a computational network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions mirror the properties of grid cells in vertebrates, which underlie spatial navigation

    Electron beam seals outer surfaces of porous bodies

    Get PDF
    Porous tungsten plugs provide even airflow for frictionless bearings used in air bearing supported gyros. The plugs have their outer cylindrical surface sealed by an electron beam process to ensure unidirectional airflow through their exit ends

    Analysing character shapes by string matching techniques

    Get PDF
    Preliminary attempts at automatic analysis and synthesis of typographic shapes are described. String matching techniques are used to recover implicit relationships between character parts. A knowledge base describing local character shape parts is created and is used in order to propagate local shape modifications across different character

    Occurrence of multipolar mitoses and association with Aurora-A/-B kinases and p53 mutations in aneuploid esophageal carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aurora kinases and loss of p53 function are implicated in the carcinogenesis of aneuploid esophageal cancers. Their association with occurrence of multipolar mitoses in the two main histotypes of aneuploid esophageal squamous cell carcinoma (ESCC) and Barrett's adenocarcinoma (BAC) remains unclear. Here, we investigated the occurrence of multipolar mitoses, Aurora-A/-B gene copy numbers and expression/activation as well as p53 alterations in aneuploid ESCC and BAC cancer cell lines.</p> <p>Results</p> <p>A control esophageal epithelial cell line (EPC-hTERT) had normal Aurora-A and -B gene copy numbers and expression, was p53 wild type and displayed bipolar mitoses. In contrast, both ESCC (OE21, Kyse-410) and BAC (OE33, OE19) cell lines were aneuploid and displayed elevated gene copy numbers of Aurora-A (chromosome 20 polysomy: OE21, OE33, OE19; gene amplification: Kyse-410) and Aurora-B (chromosome 17 polysomy: OE21, Kyse-410). Aurora-B gene copy numbers were not elevated in OE19 and OE33 cells despite chromosome 17 polysomy. Aurora-A expression and activity (Aurora-A/phosphoT288) was not directly linked to gene copy numbers and was highest in Kyse-410 and OE33 cells. Aurora-B expression and activity (Aurora-B/phosphoT232) was higher in OE21 and Kyse-410 than in OE33 and OE19 cells. The mitotic index was highest in OE21, followed by OE33 > OE19 > Kyse-410 and EPC-hTERT cells. Multipolar mitoses occurred with high frequency in OE33 (13.8 ± 4.2%), followed by OE21 (7.7 ± 5.0%) and Kyse-410 (6.3 ± 2.0%) cells. Single multipolar mitoses occurred in OE19 (1.0 ± 1.0%) cells. Distinct p53 mutations and p53 protein expression patterns were found in all esophageal cancer cell lines, but complete functional p53 inactivation occurred in OE21 and OE33 only.</p> <p>Conclusions</p> <p>High Aurora-A expression alone is not associated with overt multipolar mitoses in aneuploid ESCC and BAC cancer cells, as specifically shown here for OE21 and OE33 cells, respectively. Additional p53 loss of function mutations are necessary for this to occur, at least for invasive esophageal cancer cells. Further assessment of Aurora kinases and p53 interactions in cells or tissue specimens derived from non-invasive dysplasia (ESCC) or intestinal metaplasia (BAC) are necessary to disclose a potential causative role of Aurora kinases and p53 for development of aneuploid, invasive esophageal cancers.</p

    Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers

    Get PDF
    We present femtosecond transient absorption measurements on π\pi-conjugated supramolecular assemblies in a high pump fluence regime. Oligo(\emph{p}-phenylenevinylene) monofunctionalized with ureido-\emph{s}-triazine (MOPV) self-assembles into chiral stacks in dodecane solution below 75∘^{\circ}C at a concentration of 4×10−44\times 10^{-4} M. We observe exciton bimolecular annihilation in MOPV stacks at high excitation fluence, indicated by the fluence-dependent decay of 111^1Bu_{u}-exciton spectral signatures, and by the sub-linear fluence dependence of time- and wavelength-integrated photoluminescence (PL) intensity. These two characteristics are much less pronounced in MOPV solution where the phase equilibrium is shifted significantly away from supramolecular assembly, slightly below the transition temperature. A mesoscopic rate-equation model is applied to extract the bimolecular annihilation rate constant from the excitation fluence dependence of transient absorption and PL signals. The results demonstrate that the bimolecular annihilation rate is very high with a square-root dependence in time. The exciton annihilation results from a combination of fast exciton diffusion and resonance energy transfer. The supramolecular nanostructures studied here have electronic properties that are intermediate between molecular aggregates and polymeric semiconductors

    Farmers’ management of functional biodiversity goes beyond pest management in organic European apple orchards

    Get PDF
    Supporting functional biodiversity (FB), which provides natural pest regulation, is an environmentally sound and promising approach to reduce pesticide use in perennial cultures such as apple, especially in organic farming. However, little is known about farmers’ practices and motivations to implement techniques that favor FB, especially whether or not they really expect anything from FB in terms of pest regulation. In fact, FB-supporting techniques (FB-techniques) are massively questioned by practitioners due to inadequate information about their effectiveness. An interview survey was performed in eight European countries(i) to describe farmers’ practices and identify promising FB-techniques: (ii) to better understand their perceptions of and values associated with FB; and (iii) to identify potential drivers of (non-)adoption. Fifty-five advisors and 125 orchard managers with various degrees of experience and convictions about FB were interviewed and a total of 24 different FB-techniques which can be assigned to three different categories (ecological infrastructures, farming practices and redesign techniques) were described. Some were well-established measures (e.g., hedges and bird houses), while others were more marginal and more recent (e.g., animal introduction and compost). On average, farmers combined more than four techniques that had been implemented over a period of 13 years, especially during their establishment or conversion period. In general, it was difficult for farmers to evaluate the effectiveness of individual FB-techniques on pest regulation. They considered FB-techniques as a whole, targeting multiple species, and valued multiple ecosystem services in addition to pest regulation. The techniques implemented and their associated values differed among farmers who adopted various approaches towards FB. Three different approaches were defined: passive, active and integrated. Their appraisal of FB is even more complex because it may change with time and experience. These findings provide empirical evidence that the practical implementation of promising techniques remains a challenge, considering the diversity of situations and evaluation criteria. Increased cooperation between researchers, farmers and advisors should more effectively target research, advisory support and communication to meet farmers’ needs and perceptions

    Evolution of avalanche conducting states in electrorheological liquids

    Get PDF
    Charge transport in electrorheological fluids is studied experimentally under strongly nonequlibrium conditions. By injecting an electrical current into a suspension of conducting nanoparticles we are able to initiate a process of self-organization which leads, in certain cases, to formation of a stable pattern which consists of continuous conducting chains of particles. The evolution of the dissipative state in such system is a complex process. It starts as an avalanche process characterized by nucleation, growth, and thermal destruction of such dissipative elements as continuous conducting chains of particles as well as electroconvective vortices. A power-law distribution of avalanche sizes and durations, observed at this stage of the evolution, indicates that the system is in a self-organized critical state. A sharp transition into an avalanche-free state with a stable pattern of conducting chains is observed when the power dissipated in the fluid reaches its maximum. We propose a simple evolution model which obeys the maximum power condition and also shows a power-law distribution of the avalanche sizes.Comment: 15 pages, 6 figure

    Temperature Dependence of Exciton Diffusion in Conjugated Polymers

    Get PDF
    The temperature dependence of the exciton dynamics in a conjugated polymer is studied using time-resolved spectroscopy. Photoluminescence decays were measured in heterostructured samples containing a sharp polymer-fullerene interface, which acts as an exciton quenching wall. Using a 1D diffusion model, the exciton diffusion length and diffusion coefficient were extracted in the temperature range of 4-293 K. The exciton dynamics reveal two temperature regimes: in the range of 4-150 K, the exciton diffusion length (coefficient) of ~3 nm (~1.5 × 10-4 cm2/s) is nearly temperature independent. Increasing the temperature up to 293 K leads to a gradual growth up to 4.5 nm (~3.2 × 10-4 cm2/s). This demonstrates that exciton diffusion in conjugated polymers is governed by two processes: an initial downhill migration toward lower energy states in the inhomogenously broadened density of states, followed by temperature activated hopping. The latter process is switched off below 150 K.
    • 

    corecore