16 research outputs found

    Effect of crowding on the electron transfer process from plastocyanin and cytochrome c6 to photosystem I: a comparative study from cyanobacteria to green algae

    Get PDF
    Plastocyanin and cytochrome c 6, the alternate donor proteins to photosystem I, can be acidic, neutral or basic; the role of electrostatics in their interaction with photosystem I vary accordingly for cyanobacteria, algae and plants. The effect of different crowding agents on the kinetics of the reaction between plastocyanin or cytochrome c 6 and photosystem I from three different cyanobacteria, Synechocystis PCC 6803, Nostoc PCC 7119 and Arthrospira maxima, and a green alga, Monoraphidium braunii, has been investigated by laser flash photolysis, in order to elucidate how molecular crowding affects the interaction between the two donor proteins and photosystem I. The negative effect of viscosity on the interaction of the two donors with photosystem I for the three cyanobacterial systems is very similar, as studied by increasing sucrose concentration. Bovine serum albumin seems to alter the different systems in a specific way, probably by means of electrostatic interactions with the donor proteins. Ficoll and dextran behave in a parallel manner, favouring the interaction by an average factor of 2, although this effect is somewhat less pronounced in Nostoc. With regards to the eukaryotic system, a strong negative effect of viscosity is able to overcome the favourable effect of any crowding agent, maybe due to stronger donor/photosystem I electrostatic interactions or the structural nature of the eukaryotic photosystem I-enriched membrane particles.Spanish Ministry of Innovation and Science BFU2006-01361Andalusian Government PAI BIO-02

    Cyt c6-3: A new isoform of photosynthetic Cyt c6 exclusive to heterocyst-forming cyanobacteria

    Get PDF
    All known cyanobacteria contain Cyt c6, a small soluble electron carrier protein whose main function is to transfer electrons from the Cyt b6 f complex to PSI, although it is also involved in respiration. We have previously described a second isoform of this protein, the Cyt c6-like, whose function remains unknown. Here we describe a third isoform of Cyt c6 (here called Cytc6-3), which is only found in heterocyst- forming filamentous cyanobacteria. Cyt c6-3 is expressed in vegetative cells but is specifically repressed in heterocysts cells under diazotrophic growth conditions. Although there is a close structural similarity between Cyt c6-3 and Cyt c6 related to the general protein folding, Cyt c6-3 presents differential electrostatic surface features as compared with Cyt c6, its expression is not copper dependent and has a low reactivity towards PSI. According to the different expression pattern, functional reactivity and structural properties, Cyt c6-3 has to play an as yet to be defined regulatory role related to heterocyst differentiation.Fundación de Investigación de la Universidad de Sevilla FIUS05710000Ministerio de Economía y Competitividad BIO2012-35271, BIO2015-64169-PJunta de Andalucía PAIDI BIO-02

    Electron Transfer Pathways and Dynamics of Chloroplast NADPH-dependent Thioredoxin Reductase C (NTRC)

    Get PDF
    NADPH-dependent thioredoxin reductases (NTRs) contain a flavin cofactor and a disulfide as redox-active groups. The catalytic mechanism of standard NTR involves a large conformational change between two configurations. Oxygenic photosynthetic organisms possess a plastid-localized NTR, called NTRC, with a thioredoxin module fused at the C terminus. NTRC is an efficient reductant of 2-Cys peroxiredoxins (2-Cys Prxs) and thus is involved in the protection against oxidative stress, among other functions. Although the mechanism of electron transfer of canonical NTRs is well established, it is not yet known in NTRC. By employing stopped-flow spectroscopy, we have carried out a comparative kinetic study of the electron transfer reactions involving NTRC, the truncated NTR module of NTRC, and NTRB, a canonical plant NTR. Whereas the three NTRs maintain the conformational change associated with the reductive cycle of catalysis, NTRC intramolecular electron transfer to the thioredoxin module presents two kinetic components (kET of ∼2 and 0.1 s−1), indicating the occurrence of additional dynamic motions. Moreover, the dynamic features associated with the electron transfer to the thioredoxin module are altered in the presence of 2-Cys Prx. NTRC shows structural constraints that may locate the thioredoxin module in positions with different efficiencies for electron transfer, the presence of 2-Cys Prx shifting the conformational equilibrium of the thioredoxin module to a specific position, which is not the most efficien

    Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x

    Get PDF
    In addition to the standard NADPH thioredoxin reductases (NTRs), plants hold a plastidic NTR (NTRC), with a thioredoxin module fused at the C-terminus. NTRC is an efficient reductant of 2-Cys peroxiredoxins (2-Cys Prxs). The interaction of NTRC and chloroplastic thioredoxin x with 2-Cys Prxs has been confirmed in vivo, by bimolecular fluorescence complementation (BiFC) assays, and in vitro, by isothermal titration calorimetry (ITC) experiments. In comparison with thioredoxin x, NTRC interacts with 2-Cys Prx with higher affinity, both the thioredoxin and NTR domains of NTRC contributing significantly to this interaction, as demonstrated by using the NTR and thioredoxin modules of the enzyme expressed separately. The presence of the thioredoxin domain seems to prevent the interaction of NTRC with thioredoxin x.Junta de Andalucía BIO-022, CVI-4528, BIO-182, CVI-5919Ministerio de Ciencia e Innovación BIO2010-15430, BFU2010-1945

    Oxidizing Side of the Cyanobacterial Photosystem I

    Get PDF
    Photosystem I (PSI) interacts with plastocyanin or cytochrome c 6 on the luminal side. To identify sites of interaction between plastocyanin/cytochromec 6 and the PSI core, site-directed mutations were generated in the luminal J loop of the PsaB protein fromSynechocystis sp. PCC 6803. The eight mutant strains differed in their photoautotrophic growth. Western blotting with subunit-specific antibodies indicated that the mutations affected the PSI level in the thylakoid membranes. PSI proteins could not be detected in the S600R/G601C/N602I, N609K/S610C/T611I, and M614I/G615C/W616A mutant membranes. The other mutant strains contained different levels of PSI proteins. Among the mutant strains that contained PSI proteins, the H595C/L596I, Q627H/L628C/I629S, and N638C/N639S mutants showed similar levels of PSI-mediated electron transfer activity when either cytochrome c 6 or an artificial electron donor was used. In contrast, cytochromec 6 could not function as an electron donor to the W622C/A623R mutant, even though the PSI activity mediated by an artificial electron donor was detected in this mutant. Thus, the W622C/A623R mutation affected the interaction of the PSI complex with cytochrome c 6. Biotin-maleimide modification of the mutant PSI complexes indicated that His-595, Trp-622, Leu-628, Tyr-632, and Asn-638 in wild-type PsaB may be exposed on the surface of the PSI complex. The results presented here demonstrate the role of an extramembrane loop of a PSI core protein in the interaction with soluble electron donor proteins

    The heterologous expression of a plastocyanin in the diatom Phaeodactylum tricornutum improves cell growth under iron-deficient conditions

    Get PDF
    We have investigated if the heterologous expression of a functional green alga plastocyanin in the diatom Phaeodactylum tricornutum can improve photosynthetic activity and cell growth. Previous in vitro assays showed that a single-mutant of the plastocyanin from the green algae Chlamydomonas reinhardtii is effective in reducing P. tricornutum photosystem I. In this study, in vivo assays with P. tricornutum strains expressing this plastocyanin indicate that even the relatively low intracellular concentrations of holo-plastocyanin detected (≈4 μM) are enough to promote an increased growth (up to 60%) under iron-deficient conditions as compared with the WT strain, measured as higher cell densities, content in pigments and active photosystem I, global photosynthetic rates per cell, and even cell volume. In addition, the presence of plastocyanin as an additional photosynthetic electron carrier seems to decrease the over-reduction of the plastoquinone pool. Consequently, it promotes an improvement in the maximum quantum yield of both photosystem II and I, together with a decrease in the acceptor side photoinhibition of photosystem II—also associated to a reduced oxidative stress—a decrease in the peroxidation of membrane lipids in the choroplast, and a lower degree of limitation on the donor side of photosystem I. Thus the heterologous plastocyanin appears to act as a functional electron carrier, alternative to the native cytochrome c6, under iron-limiting conditions.Junta de Andalucía PAIDI BIO-022Ministerio de Economía y Competitividad BIO2015-64169-

    Site-directed Mutagenesis of Cytochromec 6 from Anabaena Species PCC 7119

    Get PDF
    A number of surface residues of cytochromec 6 from the cyanobacterium Anabaenasp. PCC 7119 have been modified by site-directed mutagenesis. Changes were made in six amino acids, two near the heme group (Val-25 and Lys-29) and four in the positively charged patch (Lys-62, Arg-64, Lys-66, and Asp-72). The reactivity of mutants toward the membrane-anchored complex photosystem I was analyzed by laser flash absorption spectroscopy. The experimental results indicate that cytochrome c 6 possesses two areas involved in the redox interaction with photosystem I: 1) a positively charged patch that may drive its electrostatic attractive movement toward photosystem I to form a transient complex and 2) a hydrophobic region at the edge of the heme pocket that may provide the contact surface for the transfer of electrons to P700. The isofunctionality of these two areas with those found in plastocyanin (which acts as an alternative electron carrier playing the same role as cytochromec 6) are evident

    Site-directed Mutagenesis of Cytochromec 6 from Synechocystissp. PCC 6803

    Get PDF
    This paper reports the first site-directed mutagenesis analysis of any cytochrome c 6, a heme protein that performs the same function as the copper-protein plastocyanin in the electron transport chain of photosynthetic organisms. Photosystem I reduction by the mutants of cytochromec 6 from the cyanobacteriumSynechocystis sp. PCC 6803 has been studied by laser flash absorption spectroscopy. Their kinetic efficiency and thermodynamic properties have been compared with those of plastocyanin mutants from the same organism. Such a comparative study reveals that aspartates at positions 70 and 72 in cytochrome c 6 are located in an acidic patch that may be isofunctional with the well known “south-east” patch of plastocyanin. Calculations of surface electrostatic potential distribution in the mutants of cytochromec 6 and plastocyanin indicate that the changes in protein reactivity depend on the surface electrostatic potential pattern rather than on the net charge modification induced by mutagenesis. Phe-64, which is close to the heme group and may be the counterpart of Tyr-83 in plastocyanin, does not appear to be involved in the electron transfer to photosystem I. In contrast, Arg-67, which is at the edge of the cytochrome c 6 acidic area, seems to be crucial for the interaction with the reaction center.Dirección General de Investigación Científica y Técnica (DGICYT, Grant PB96-1381)European Union (EU, CHRX-CT94-0540 and ERB-FMRX-CT98-0218)Junta de Andalucía (PAI, CVI-0198

    The singular properties of photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum suggest new alternative functions

    Get PDF
    Cytochrome c 550 is an extrinsic component in the luminal side of photosystem II (PSII) in cyanobacteria, as well as in eukaryotic algae from the red photosynthetic lineage including, among others, diatoms. We have established that cytochrome c 550 from the diatom Phaeodactylum tricornutum can be obtained as a complete protein from the membrane fraction of the alga, although a C-terminal truncated form is purified from the soluble fractions of this diatom as well as from other eukaryotic algae. Eukaryotic cytochromes c 550 show distinctive electrostatic features as compared with cyanobacterial cytochrome c 550 . In addition, co-immunoseparation and mass spectrometry experiments, as well as immunoelectron microscopy analyses, indicate that although cytochrome c 550 from P. tricornutum is mainly located in the thylakoid domain of the chloroplast – where it interacts with PSII –, it can also be found in the chloroplast pyrenoid, related with proteins linked to the CO 2 concentrating mechanism and assimilation. These results thus suggest new alternative functions of this heme protein in eukaryotes.Ministerio de Economía, Industria y Competitividad BIO2015-64169-PJunta de Andalucía PAIDI BIO-02
    corecore