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Cytochrome c550 is an extrinsic component in the luminal side of photosys-
tem II (PSII) in cyanobacteria, as well as in eukaryotic algae from the red
photosynthetic lineage including, among others, diatoms. We have estab-
lished that cytochrome c550 from the diatom Phaeodactylum tricornutum can
be obtained as a complete protein from the membrane fraction of the alga,
although a C-terminal truncated form is purified from the soluble fractions of
this diatom as well as from other eukaryotic algae. Eukaryotic cytochromes
c550 show distinctive electrostatic features as compared with cyanobacterial
cytochrome c550. In addition, co-immunoseparation and mass spectrometry
experiments, as well as immunoelectron microscopy analyses, indicate that
although cytochrome c550 from P. tricornutum is mainly located in the thy-
lakoid domain of the chloroplast – where it interacts with PSII – , it can also
be found in the chloroplast pyrenoid, related with proteins linked to the CO2
concentrating mechanism and assimilation. These results thus suggest new
alternative functions of this heme protein in eukaryotes.

Introduction

Photosynthetic cytochrome c550 (Cc550) is a c-type heme
protein (molecular mass around 15 kDa, encoded by
the PSBV gene) with an unusual bis-histidinyl axial
coordination (Frazão et al. 2001) that acts as an extrinsic
subunit of photosystem II (PSII) by binding stoichio-
metrically to the luminal surface of this photosynthetic
complex (Shen 2015, Ago et al. 2016). In spite of its
redox character, the role of Cc550 in PSII appears to
be just structural, by stabilizing the Mn4CaO5 cluster
and binding to Cl− and Ca2+ ions, as a redox function
of the Cc550 heme cofactor in PSII has not yet been

Abbreviations – CA, carbonic anhydrase; Cc550, cytochrome c550; Cc6, cytochrome c6; CCM, CO2-concentrating mechanism;
DSS, disuccinimidyl suberate; FBA, fructose-bisphosphate aldolase; PSI, photosystem I; PSII, photosystem II; RubisCO,
ribulose-1,5-bisphosphate carboxylase/oxygenase.
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established (Shen and Inoue 1993, Shen et al. 1998,
Enami et al. 2003, Nagao et al. 2010). Cc550 is present
in cyanobacteria and in eukaryotic algae from the red
photosynthetic lineage, which comprises, among oth-
ers, red algae and diatoms, but is absent in the green
lineage, which includes green algae and plants, that
have replaced Cc550 for the Ca2+ binding PsbP subunit,
which lacks any cofactor (revised in Roncel et al. 2012).

In many organisms, Cc550 can be easily purified as a
soluble protein (Navarro et al. 1995, Kerfeld and Krog-
mann 1998, Bernal-Bayard et al. 2017), and the exis-
tence of two different populations of Cc550 (bound to the
PSII or free in the lumen) has been postulated (Kirilovsky
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et al. 2004). Soluble Cc550 has a very low midpoint
redox potential (ranging from −190 to −314 mV; Alam
et al. 1984, Navarro et al. 1995, Roncel et al. 2003,
Bernal-Bayard et al. 2017) incompatible with a redox
function in PSII. However, much more positive potential
values were determined when bound to PSII (from −80
to +200 mV; Roncel et al. 2003, Guerrero et al. 2011).
Several alternative roles have been proposed for the sol-
uble Cc550 in cyanobacteria, as in anaerobic carbon
and hydrogen metabolism (Krogmann 1991, Morand
et al. 1994), cyclic photophosphorylation (Kienzel and
Peschek 1983) or in the reduction of nitrate to ammo-
nium (Alam et al. 1984), but none of these possible func-
tions have been clearly established.

Diatoms belong to the red lineage of algae that
diverged from the green lineage that finally evolved to
higher plants. In addition to Cc550 (or PSBV), the assem-
bly of extrinsic proteins at the lumenal side of diatom
PSII includes the cyanobacterial-like subunits PsbO and
PsbU, as well as the PsbQ’ subunit, also present in red
algae (Enami et al. 2003, Nagao et al. 2010), and an
additional extrinsic protein, named as Psb31 (Okumura
et al. 2008, Nagao et al. 2017). However, although the
structure of diatom PSII has not yet been solved, the
crystal structure of PSII from the red alga Cyanidium
caldarium has shown an overall structure similar to the
cyanobacterial complex, including the position of Cc550
(Ago et al. 2016).

In order to optimize photosynthetic efficiency, the
chloroplasts of diatoms display a refined thylakoid
architecture (Flori et al. 2017), which includes the pres-
ence of the pyrenoid, an electron-dense semicrystalline
protein aggregate present in the chloroplast of most
unicellular eukaryotic algae. It is considered that CO2
fixation occurs in the pyrenoid, where the enzyme
ribulose-1,5-bisphosphate carboxylase/oxygenase
(RubisCO) is preferentially localized, accounting for
over 90% of the pyrenoid’s protein content (reviewed
in Badger et al. 1998, Meyer et al. 2017). In addition,
the presence of carbonic anhydrase (CA) enzymes in
the pyrenoid has been reported (Tachibana et al. 2011,
Sinetova et al. 2012, Hopkinson et al. 2016, Kikutani
et al. 2016). Thus, the role of the pyrenoid is to sustain
efficient carbon fixation by increasing the CO2 con-
centration [CO2 concentrating mechanism (CCM)] in
the vicinity of RubisCO (Giordano et al. 2005, Matsuda
et al. 2017). Moreover, in most unicellular eukaryotic
algae, including diatoms, the pyrenoid is penetrated
by one or more thylakoid lamellae (Bedoshvili et al.
2009, Engel et al. 2015, Meyer et al. 2017). In the
marine diatom Phaeodactylum tricornutum, in particu-
lar, the pyrenoid matrix is crossed by a single thylakoid
lamella that contains a luminal θ-type CA, that adds to

the two ß-type CAs, PtCA1 and PtCA2, located inside
the pyrenoid (Tachibana et al. 2011, Kikutani et al.
2016). Components of the photosystem I (PSI) complex
have also been found in pyrenoids, indicating that
intrapyrenoid thylakoids could supply ATP to this com-
partment via cyclic electron transport, thus covering the
energetic demands of carbon fixation at the same time
as avoiding the evolution of inhibitory O2 (McKay and
Gibbs 1991, Meyer and Griffiths 2013). Consequently,
it was generally accepted that intrapyrenoid thylakoids
are enriched in PSI and lack PSII, although in the green
alga Chlamydomonas reinhardtii, the presence of PSII
components has been recently reported (Mackinder
et al. 2017). However, the presence in this space of
either the soluble photosynthetic cytochrome c6 (Cc6)
or the Cc550, has not been yet addressed.

Recently, the photosynthetic Cc550 from P. tricornu-
tum has been purified from algal cells and character-
ized (Bernal-Bayard et al. 2017). The purified protein
was described as being truncated in the last hydropho-
bic residues of the C-terminus. Moreover, a weaker
affinity of Cc550 for the diatom PSII complex was also
described (Bernal-Bayard et al. 2017). Here, we provide
additional insights into the peculiar properties of Cc550
from the diatom P. tricornutum. First, we have deter-
mined that it is possible to purify Cc550 as the complete
non-truncated form. In addition, P. tricornutum Cc550 has
been immunolocalized in the pyrenoid of the chloro-
plast, in close contact with proteins previously described
as located in this microcompartment. Thus, in P. tricornu-
tum, the Cc550 could play a role related to the pyrenoid
function that should yet be defined.

Materials and methods

Cell cultures

Cells of the coastal pennate diatom P. tricornutum CCAP
1055/1 were grown in artificial seawater medium (12 μM
Fe, iron-replete culture; McLachlan 1964, Goldman and
McCarthy 1978) in a rotatory shaker (50 rpm) at 20∘C,
with regular transfer of the cells into fresh media. The
cultures were illuminated by white led lamps giving
an intensity of 4.35 W m−2 (T8-150MWBL led lamps;
Wellmax, Shanghai, China) under a light/dark cycle of
16/8 h. Chaetoceros muelleri, Nannochloropsis gaditana
and Isochrysis galbana cells were obtained from indoor
cultures from the Centro Público Integrado de Formación
Profesional Marítimo Zaporito (San Fernando, Spain).

Protein purification

Purification of truncated Cc550 from P. tricornutum,
C. muelleri, N. gaditana and I. galbana cells was carried
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out essentially as recently described in Bernal-Bayard
et al. (2017), in the presence of the protease inhibitors
phenylmethylsulfonyl fluoride (PMSF) (1 mM), ben-
zamidine (1 mM), aminocaproic acid (100 mM),
D-phenylalanine (10 mM) and hydrocinnamic acid
(1 mM). Purification of the complete Cc550 from P. tricor-
nutum membrane fractions was performed essentially
following the protocol previously described to obtain
PSII-enriched samples (Bernal-Bayard et al. 2017) with
some modifications. Basically, P. tricornutum cells were
disrupted three times in a French press at 15 000 psi,
the ß-dodecyl-maltoside (ß-DM) incubation was done
for 45 min, and the solubilized samples were loaded
onto a 0.17–0.3 M sucrose continuous density gradient.
Finally, the complete Cc550 was collected from the
top gradient band, corresponding to the free protein
(Bernal-Bayard et al. 2017). For the MS analysis, sam-
ples were exhaustively washed and concentrated by
ultrafiltration with 5 mM Tris–HCl buffer, pH 8.5.

Protein samples for in-gel peptide fingerprint analysis
of P. tricornutum Cc550 were obtained from crude cell
extracts resolved on polyacrylamide gel electrophore-
sis. Fresh P. tricornutum cells were washed twice in
ice-cold PBS 20 mM buffer (pH 8.0), and resuspended in
25 mM Tris–HCl (pH 8.5), 50 mM NaCl buffer, supple-
mented with 0.5% Triton X-100, DNase and the protease
inhibitors PMSF, benzamidine and aminocaproic acid.
Samples were incubated for 5 min at 70∘C followed by
a cycle of French-press disruption (20 000 psi). Samples
were then centrifuged at 170 000 g for 15 min, and the
resultant supernatant was resolved on 20% (w/v) sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and
visualized by Coomassie blue staining.

For the co-immunoseparation and immunodetec-
tion of Cc550, polyclonal antibodies raised against this
cytochrome (Bernal-Bayard et al. 2017) were purified
by their affinity to pure Cc550, by using 4 mg of Cc550
(Bernal-Bayard et al. 2017) and 2 ml of the AminoLink
Plus Immobilization Kit (Thermo Scientific, Waltham,
MA) at pH 7.2, according to the instructions of the
supplier. Antibodies against Cc6 (Roncel et al. 2016) and
the large and small plant RubisCO subunits (Agrisera,
Vännäs, Sweden) were also used in control experiments.
For immunodetection of P. tricornutum RubisCO sub-
units, initial crude extracts were in some cases enriched
in RubisCO by precipitation with PEG 4000 (20% w/v),
as previously described (Haslam et al. 2005).

DNA analysis

Genomic DNA extraction was carried out using a simpli-
fied CTAB-extraction procedure (Lukowitz et al. 2000).
Total extracted DNA from C. muelleri and I. galbana was

used as template to amplify by polymerase chain reaction
(PCR) the corresponding PSBV genes, using adequate
oligonucleotide pairs (Fig. S1, Supporting Information).
Thus, whereas C. muelleri gene amplification was com-
pleted by using oligonucleotide primers designed from
the Chaetoceros gracilis sequence (C1-F and C2-R), I. gal-
bana PSBV gene amplification and sequencing was done
in two steps. First, using degenerate oligonucleotide
primers designed from a consensus sequence from C.
gracilis, P. tricornutum and the five closest PSBV genes
(according to a BLAST search), which allowed the ampli-
fication and sequencing of the 3′-end (242 pb), that
showed a 83% identity with a similar sequence of the
PSBV gene from the Isochrysidal alga Emiliania huxleyi.
Thus, a second PCR amplification was carried out to
obtain the PSBV 5′-end by using oligonucleotide primers
designed from E. huxleyi. In all cases, the PCR fragments
were cloned for subsequent sequencing in the pGEM-T
vector (Promega, Madison, WI) according to the proto-
col of the supplier. DNA sequencing was carried out in
the sequencing service of the company Secugen (Madrid,
Spain).

Co-immunoseparation analysis

Three different samples were used in the
co-immunoseparation experiments. First, fresh P. tricor-
nutum cells, resuspended in 25 mM Tris–HCl (pH 7.5),
50 mM NaCl and 0.1% Triton X-100, supplemented with
DNase and the protease inhibitors PMSF, benzamidine
and aminocaproic acid, were disrupted in a French
press at 20 000 psi (three cycles). Samples were then
centrifuged at 170 000 g for 30 min, and the resultant
supernatant was considered as the soluble fraction.
Second, P. tricornutum cells resuspended in 50 mM
Tris–HCl (pH 7.5), 50 mM NaCl and 5 mM EDTA (buffer
A) supplemented with proteases inhibitors, DNase
and 1 M betaine, were disrupted at a lower pressure
(7500 psi, two cycles). Unbroken cells were separated
by centrifugation at 5000 g for 5 min and the supernatant
was centrifuged at 170 000 g for 30 min. The resultant
pellet was resuspended in buffer A at 1 mg Chl ml−1 and
later diluted to 0.5 mg Chl ml−1 with the same volume
of ß-DM 3% (w/v) prepared in buffer A. The solution
was then incubated 30 min in the dark at 4∘C under
gentle stirring followed by centrifugation at 170 000 g for
30 min. The resulting detergent-solubilized supernatant
was diluted with buffer A to a ß-DM concentration
of 0.1% and concentrated in an Amicon pressure cell
(10 K cutoff filter; Merck Millipore, Darmstadt, Ger-
many). The final concentrated solution was considered
as the membrane-extracted fraction. Finally, crosslinked
samples, with the crosslinking reagent disuccinimidyl
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suberate (DSS; Thermo Scientific), were obtained from
fresh P. tricornutum cells by following the instructions
of the supplier. Cells were resuspended in PBS 20 mM
(pH 8.0) buffer and washed three times with ice-cold
PBS (pH 8.0) to remove amine-containing agents from
the culture media. Cells were then treated with DSS
to 5 mM final concentration, followed by 30 min incu-
bation at room temperature. Crosslinking reactions
were stopped by the addition of Quench Solution (1 M
Tris–HCl, pH 7.5) to a final concentration of 20 mM Tris,
followed by 15 min incubation at room temperature.
Samples were then centrifuged at 5000 g for 5 min and
pellets were resuspended in 20 mM Tris–HCl (pH 7.5),
50 mM NaCl and 5 mM EDTA buffer, supplemented
with protease inhibitors and DNase, and disrupted in
a French press at 20 000 psi (three cycles). Unbroken
cells were discarded by centrifugation, and cell lysates
were diluted to 1 mg Chl ml−1 and treated with ß-DM
as described previously for the membrane-extracted
fraction. The resulting final concentrated supernatant
was considered as the crosslinked fraction. In all cases,
the protein content of the samples was quantified using
the Lowry method, whereas chlorophyll concentration
was determined according to Arnon (1949).

Immunopurifications using μ columns and μMACS
separator (Miltenyi Biotec, Bergisch Gladbach, Ger-
many) were carried out following the instructions of
the supplier. An amount of 5 mg of protein mixed
with 5 μl of purified polyclonal antibodies against
Cc550 were used, and the eluted fraction was analyzed
by liquid chromatography tandem-mass spectrometry
(LC–MS/MS). Control immunoseparation experiments,
using the preimmune serum, were also carried out
and the identified proteins were subtracted from those
obtained when using the immune serum.

MS analysis

Matrix-assisted laser desorption/ionization time-of-flight
MS (MALDI-TOF MS) and LC–MS/MS analyses were
performed at the Instituto de Bioquímica Vegetal y
Fotosíntesis Proteomic Service (Sevilla, Spain). Tryptic
digestion of in-gel P. tricornutum proteins for peptide
fingerprint analysis and MALDI-TOF MS were carried
out as previously described (Bernal-Bayard et al. 2017).
Tryptic digestion in solution of immunoseparated sam-
ples, as well as peptide analysis by LC and MS, were
performed basically as previously described (Vowinckel
et al. 2013) on a Tandem Quadrupole TOF MS (AB Sciex
TripleTOF 5600) coupled to a NanoSpray III Ion Source
(AB Sciex) and nano-HPLC (Eksigent ekspert nanoLC
425). Peptide separation was first carried out on a precol-
umn (Acclaim PepMap 100 C18, 5 μm, 100 Å, 100 μm

id×20 mm, Thermo Fisher Scientific) and then eluted
onto the analytical column (New Objective PicoFrit col-
umn, 75 μm id×250 mm, emitter included and packed
with ReproSil-Pur 3 μm). Data acquisition was achieved
as previously described (Vowinckel et al. 2013). The ion
accumulation time was set to 250 ms (MS) and to 65 ms
(MS/MS), resulting in a total duty cycle of 2.89 s.

LC–MS/MS data acquired in DDA mode were ana-
lyzed and processed basically as described in Vowinckel
et al. (2013), by using the Paragon algorithm (Protein-
Pilot Software, AB Sciex, v. 5.0.1) and the reference
proteome of P. tricornutum in the UniProt database of
protein sequences. AB Sciex contaminants and rabbit
proteins from the UniProt database were discarded. Only
peptides with a confidence score> 0.05 were considered
for further analysis.

Immunoelectron microscopy

Phaeodactylum tricornutum cells pellets were fixed in
2% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.3,
for 2 h at 4∘C, washed several times in the same buffer
at 4∘C and dehydrated through a graded ethanol series.
Finally, cells were embedded in LR White medium grade
resin (Sigma-Aldrich, Saint Louis, MO) as described in
Lichtlé et al. (1992).

For immunolocalization, paled gold sections were cut
with an ultramicrotome (Reichert-Jung Ultracut, Wien,
Austria) with a diamond knife and mounted on nickel
grids. Ultrathin sections were treated with the rabbit
purified antiserum anti-Cc550 (Bernal-Bayard et al. 2017)
for 1 h, and the secondary antibody (goat anti-rabbit
5-nm gold particles, GAR G5 EM; Janssen Life Sciences,
Beerse, Belgium) was used at a dilution of 1:100 for
1 h. Finally, the grids were contrasted with 2% aqueous
uranyl acetate for 8 min and observed with a Zeiss
Libra 120 Electron Microscope at 80 kV. Two controls
were performed: (1) replacing the primary antibody by
a drop of PBS buffer; and (2) incubation with the primary
antibody anti-Cc6 (luminal soluble carrier) at a dilution
of 1:1000 for 1 h.

Structural models

Structures of Cc550 from C. muelleri, N. gaditana and
I. galbana were modeled using the SWISS MODEL
Workspace platform (https://swissmodel.expasy.org/
interactive; Guex and Peitsch 1997), using as templates
the crystal structures of Cc550 from the cyanobacterium
Synechocystis sp. PCC 6803 (pdb 1E29) and the red
alga C. caldarium (pdb 4YUU). The representation of
protein surface electrostatic potentials was performed
by using the Swiss-Pdb Viewer program (https://spdbv
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Fig. 1. (A) Differential absorp-
tion spectra between reduced
and oxidized Cc550 (via dithionite
or ascorbate treatments) from
Phaeodactylum tricornutum
extracted by solubilization from
membrane fraction. The concen-
tration of cytochrome was 3 μM.
(B) Molecular weight MS analysis
of the complete holocytochrome.

.vital-it.ch/). Although interactions of the amino acid
side chains – that can change their pKas and therefore
their charge in solution – are not taken into account,
this program is a useful tool for comparative purposes.

Data deposition

The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD008763. The
PSBV gene sequences from C. muelleri and I. galbana
are deposited in the NCBI databank, GenBank accession
numbers MG779498 and MG779497, respectively.

Results and discussion

In a previous paper, we showed that P. tricornutum
Cc550 is purified from the soluble fraction as a trun-
cated protein in the two last tyrosine residues of
the C-terminus (Bernal-Bayard et al. 2017). Similar
results were obtained (data not shown) even though
the purification was carried out in the presence of
broad-spectrum proteases inhibitors (5 mM EDTA and
1 mM PMSF), as well as specific inhibitors of either
serine proteases (1 mM benzamidine and 100 mM
aminocaproic acid) or carboxypeptidases competitive
inhibitors (10 mM D-phenylalanine and 1 mM hydrocin-
namic acid; Elkins-Kaufman and Neurath 1949, Hartsuck
and Lipscomb 1971). In this work, we have, however,
developed a protocol for the purification of the complete
protein by detergent solubilization from the membrane
fraction and the further isolation of the free protein
from the top part of sucrose gradients (Fig. 1A). Thus,

an MALDI-TOF MW analysis of the solubilized Cc550
showed an MW (approximately 15 433 Da) that fits with
the expected MW based on the PSBV gene sequence
(15 438 Da; Fig. 1B). The occurrence of the complete
holoprotein was also confirmed by tryptic digestion and
MS peptide fingerprint analysis (data not shown).

A procedure was designed to check if the soluble or
the membrane-associated Cc550 correspond to different
physiological forms (a soluble truncated protein and a
complete protein bound to PSII), and not to the exposi-
tion to cell proteases in the soluble fraction during the
purification course. Phaeodactylum tricornutum crude
cell extracts were heated at 70∘C and directly resolved
on polyacrylamide gel electrophoresis, in order to inac-
tivate possible proteolytic enzymes and shorten the pro-
cess of proteins separation. Extracted gel spots in the MW
range corresponding to Cc550 were analyzed by tryp-
tic digestion and MS peptide fingerprint (Fig. S2). The
fingerprint peptide analysis accurately covered 100% of
the amino acid sequence corresponding to the complete
non-truncated protein, whereas the theoretical peptide
fingerprint for the truncated protein could not be cor-
rectly fitted to the obtained data (Fig. S2), which indicates
that truncation is a non-physiological process. Remark-
ably, the enzymatic activity responsible of Cc550 trunca-
tion seems to be widespread among several lines of the
red lineage of eukaryotic algae, as truncated Cc550 was
purified from C. muelleri (a marine centric diatom), N.
gaditana (Eustigmatophyte) and I. galbana (Haptophyte,
Isochrysidales). However, this activity seems to be absent
in cyanobacteria, as Cc550 from Synechocystis sp. PCC
6803, used as a control, showed the expected MW for
the complete protein (data not shown).
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Fig. 2. (A) Backbone model of Cc550 from Chaetoceros muelleri obtained
using the crystal structures of Cc550 from the cyanobacterium Synechocystis
sp. PCC 6803 (PDB entry 1E29) and the red alga Cyanidium caldarium (PDB
4YUU) as main templates. (B–D) Surface electrostatic potential distribution
of the structural models of Cc550 from (B) C. muelleri, (C) Nannochloropsis
gaditana and (D) Isochrysis galbana. The view displays the heme groups
in the same orientation as in (A), showing in front the cofactor exposed
area, and in the top the protein C-terminal hydrophobic protuberance.
Simulations of surface electrostatic potential distribution were performed
using the Swiss-PDB Viewer Program assuming an ionic strength of 500 mM
at pH 7.0. Positively and negatively charged regions are depicted in blue
and red, respectively.

Fig. 3. Potential Cc550 interacting proteins as identified by co-immunoseparation and LC–MS/MS in soluble, membrane and crosslinked frac-
tions of the diatom Phaeodactylum tricornutum. (A) Venn diagram of the Cc550-protein interaction dataset showing intersections of the three
co-immunoseparated fractions. (B) Chloroplastic protein targets selected when appearing both in the crosslinked fraction and at least in one of
the other two fractions (soluble or membrane). a) SF, co-immunoseparated in the soluble fraction; MF, co-immunoseparated in the membrane fraction;
CF, co-immunoseparated in the crosslinked fraction. b) Cc550 was identified in all the samples.

In the case of C. muelleri and I. galbana, previous
sequencing of their PSBV genes was required in order
to establish the MW of both complete proteins. The C.
muelleri PSBV gene showed only 11 nucleotide varia-
tions as compared with the gene of C. gracilis, but these
resulted only in two amino acid changes in the protein
transit peptide (data not shown). The I. galbana PSBV
gene showed 83% identity with the equivalent gene of
the also Isochrysidal alga E. huxleyi, and the protein

alignment (94% identity) is shown in Fig. S1. Modeled
structures of C. muelleri, I. galbana and N. gaditana Cc550
were obtained from the available sequences (Fig. 2). As
previously described in the case of the P. tricornutum
protein, the three Cc550 show a common folding sim-
ilar to that described in cyanobacteria and red algae
(Fig. 2) and conserve the hydrophobic northern finger
(according to the orientation presented in Fig. 2)
previously described (Frazão et al. 2001). However,
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the surface of eukaryotic Cc550 also shows exclusive
electrostatic features as compared with cyanobacterial
Cc550. Thus, whereas in the prokaryotic protein the
cofactor exposed area holds a negatively charged elec-
trostatic character (Frazão et al. 2001, Bernal-Bayard
et al. 2017), in the eukaryotic Cc550, the area around
the heme group is mainly hydrophobic, and the nega-
tive electrostatic potential is restricted to the southern
area, opposite to the hydrophobic northern protuber-
ance (Fig. 2). According to the PSII known structures,
the facing surface of Cc550 (Fig. 2), that includes the
cofactor exposed area, is involved in the binding to the
photosystem, maintaining close contacts with the PSII
surface (Ago et al. 2016). Consequently, the distinctive
surface charge distribution of eukaryotic Cc550 could
be significant when establishing the binding affinity to
PSII, as previously suggested for the P. tricornutum Cc550
(Bernal-Bayard et al. 2017).

Although Cc550 can be obtained from soluble cell
extracts in different organisms (Evans and Krogmann
1983, Navarro et al. 1995, Kerfeld and Krogmann
1998, Bernal-Bayard et al. 2017), this fact is particularly
significant in P. tricornutum, where about 60–85%
of total Cc550 is solubilized during the process of
cell disruption in the absence of added detergents
(Bernal-Bayard et al. 2017). A similar result has been
here observed during the purification of this protein
from C. muelleri, N. gaditana and I. galbana cells (data
not shown). These results could be justified by a combi-
nation of a weaker affinity for PSII and an enhanced PSII
turnover, as previously suggested in diatoms (Lavaud
et al. 2016), both resulting in a higher fraction of
unbound Cc550. In this sense, most of the protein still
attached to membrane fractions in P. tricornutum has
been shown to be released by relatively weak detergent
extraction procedures, thus suggesting a comparatively
weaker affinity of Cc550 for PSII (Bernal-Bayard et al.
2017). A less intense affinity for PSII may open the
possibility of new functions for an increased fraction of
unbound Cc550. We have explored this possibility by
performing a co-immunoseparation (from the endoge-
nous Cc550 already present in the different samples) and
MS analysis, in order to identify possible novel pro-
tein interactors of P. tricornutum Cc550. Three different
cellular fractions were immunoseparated with purified
Cc550-specific antibodies and analyzed by LC–MS/MS:
(1) the supernatant obtained after cell disruption at high
pressure in a non-osmotically stabilized medium fol-
lowed by sample ultracentrifugation (soluble fraction);
(2) the detergent-extracted fraction obtained from mem-
brane pellets after cell breaking at low pressure in an
osmotically stabilized medium (membrane fraction) and
(3) the supernatant obtained after DSS treatment of whole

cells followed by cell disruption and ultracentrifugation
in the presence of detergent (crosslinked fraction).

A relatively low number of proteins were detected
by LC–MS/MS in the three co-immunoseparated sam-
ples, more particularly in the crosslinked fraction (data
available via ProteomeXchange identifier PXD008763).
Moreover, in order to minimize the occurrence of false
positive or redundant interactions, LC–MS/MS data were
filtered according to the following criteria: (1) possible
protein partners have to be described as chloroplastic
proteins and/or predicted to have a transit peptide tar-
geting to this organelle; and (2) undefined predicted pro-
teins, ribosomal proteins and fucoxanthin-chlorophyll
light-harvesting antenna proteins were discarded. From
these criteria, a preliminary list of potential targets of
Cc550 was initially obtained (Figs 3A and S3), which
includes RubisCO. Although this enzyme is a highly
abundant chloroplast protein complex in plants, it has
been shown that RubisCO has a much lower abundance
in microalgae, representing less than 6% of total protein
(Losh et al. 2013). In addition, the use of the purified
Cc550-specific antibodies in western-blot experiments
with cell extracts showed a major recognition of Cc550,
and no bands corresponding to the predominant com-
ponents of the pyrenoid (i.e. RubisCO subunits or CA
enzymes) were detected (Fig. S4). Thus, we consider
RubisCO as a reliable co-immunoseparated target of P.
tricornutum Cc550.

Co-immunoseparation in the soluble or membrane
fractions does not firmly demonstrate a specific physi-
ological interaction, since the method involves putting
together proteins that are actually in different cellular
compartments, which can lead to describing artefactual
interactions. Thus, protein crosslinking in whole cells
has been used to demonstrate close contacts between
Cc550 and other proteins as well as co-localization
in the same subcellular compartment. Ultimately, vali-
dated protein targets where selected as appearing both
in the crosslinked fraction and at least in one of the
other two (soluble or membrane) fractions (Fig. 3A).
This restrictive criterion discarded two PSII-associated
proteins that appeared both in the soluble and mem-
brane fractions, but not in the crosslinked one (Fig.
S3), as they are the PSII extrinsic PsbQ’ subunit and
a FK506-binding protein with peptidylprolyl isomerase
activity, that in plants is related to the PSII assembly (Gol-
lan et al. 2012). The final list of co-immunoseparated
proteins fitting the restrictive stablished criteria is shown
in Fig. 3B. It is important to note that most proteins that
co-immunoseparated in the crosslinked fraction have
been already annotated as being located in the chloro-
plast (Figs 3 and S3), validating the reliability of the
method used. In addition to several PSII subunits (Psb31,
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CP43, D1 and D2), expected from the Cc550 location
in the red algal PSII structure (Ago et al. 2016), only
a very limited number of proteins co-immunoseparated
in the three types of samples analyzed (Fig. 3), includ-
ing RubisCO (large and small subunits) and PtCA1 (a
ß-CA), both located in the pyrenoid compartment (Satoh
et al. 2001, Tachibana et al. 2011, Kikutani et al. 2016).
Only another protein of unknown function, classified
as a CreA-like protein, also co-immunoseparated in the
three samples. The CreA family is a group of carbon
metabolism transcription regulators described in other
organisms (Ries et al. 2016). However, although dis-
tantly related to CreA proteins, this CreA-like protein
of P. tricornutum lacks the typical sequence signatures
corresponding to zinc fingers for DNA-binding, typi-
cally found in canonical CreA proteins, and its transit
peptide indicates a chloroplast targeting. Moreover, a
sequence-based structural analysis predicted the exis-
tence of a transmembrane domain in this protein (data
not shown). On the other hand, another pyrenoid pro-
tein, the fructose-bisphosphate aldolase (FBA; Allen et al.
2012), was detected both in the crosslinked and soluble

fractions (Fig. 3B). Finally, two proteins were detected
both in the crosslinked and membrane fractions: the PSI
PsaD subunit and the ATP-synthase 𝛼 subunit, and these
two results can be attributed to non-specific interactions
of luminal Cc550 with the two thylakoid membrane com-
plexes (ATP-synthase and PSI) to which these subunits
belong. Actually, other ATP-synthase and PSI subunits
were detected, but only in the immunoseparated mem-
brane fractions (Fig. S3). Nevertheless, all the potential
new targets of Cc550 here identified are located in the
pyrenoid (RubisCO, PtCA1, FBA) or may be related to
carbon metabolism (CreA-like protein).

To confirm the possible presence of Cc550 in the
pyrenoid we have carried out an immunoelectron
microscopy analysis of the location of Cc550 in P. tri-
cornutum cells, by using purified polyclonal antibodies
specific against this protein. As a control, the loca-
tion of the luminal soluble Cc6 carrier has been also
studied. Fig. 4 shows the electron microscopy results
for the immunodetection experiments. As expected,
Cc6 seems to be located both in the stromal and the
intrapyrenoid thylakoids but not in the pyrenoid matrix

Fig. 4. Immunoelectron micro-
scopy images of Phaeodactylum
tricornutum cells (upper panel)
showing localization of (A) pho-
tosynthetic Cc550, and (B) the
soluble luminal Cc6. The lower
panel shows the expansion of the
pyrenoid area. Cp, chloroplast; Py,
pyrenoid.
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(Fig. 4B), in agreement with its functional association
with PSI. However, although Cc550 showed the expected
chloroplastic localization, it appears not only in the
stromal and intrapyrenoid thylakoids, but also in the
pyrenoid matrix (Fig. 4A). Thus, the association of Cc550
with the pyrenoid in P. tricornutum is supported both by
co-immunoseparation and immunoelectron microscopy
analysis.

It is important to note that our results do not imply that
Cc550 functionally interacts with all the pyrenoid targets
included in Fig. 3 (RubisCO, PtCA1 or FBA), as possi-
ble cross interactions between these proteins can result
in indirect co-immunoseparations with Cc550. However,
our results strongly support the pyrenoid localization of
Cc550, confirmed by both the in vivo crosslinking with
pyrenoid proteins and the pyrenoid immunolocalization
(Figs 3 and 4). The alternative could be the existence of
cross reactions between the purified antibodies against
Cc550 with any of the observed pyrenoid targets, which
can result in parallel immunoseparations and immun-
odetections. However, we consider that this possibility
can be ruled out, as western blot experiments have not
shown signs of the occurrence of such cross reactions
(Fig. S4).

The association of Cc550 with the pyrenoid has
not been previously reported and undoubtedly rep-
resents an intriguing result. Eukaryotic Cc550 is a
chloroplast-encoded protein that has a transit peptide,
similar to those from cyanobacteria, for targeting into
the thylakoid lumen, and therefore the interaction with
RubisCO (or other pyrenoid proteins) that is located
in the stromal compartment is difficult to justify. In
addition, PSII activity has been initially described to be
restricted to stromal thylakoids (McKay and Gibbs 1991).
However, very recently, the presence of both intrinsic
and extrinsic PSII subunits in the pyrenoid of the green
alga C. reinhardtii has been reported (Mackinder et al.
2017, Zhan et al. 2018), including the localization of
the PsbQ extrinsic component of PSII in intrapyrenoid
thylakoids (Mackinder et al. 2017). Thus, the pres-
ence of the PSII extrinsic PSBV subunit (Cc550) in this
compartment could not be totally unexpected.

We only can speculate in order to explain a location
of Cc550 in the pyrenoid of P. tricornutum. In C. rein-
hardtii, the described presence of PSII components in the
pyrenoid could be related with the existence of a network
of pyrenoid-penetrating tubules from the intrapyrenoid
thylakoids. However, although an equivalent network
has been described in the pyrenoid of red algae, it has
not been found in diatoms (Engel et al. 2015, Meyer et al.
2017). On the other hand, in unicellular algal species,
it has been proposed that the pyrenoid plays an impor-
tant role in defining the starting point of thylakoidal

maturation and structural nucleation (reviewed in Rast
et al. 2015). In particular, in C. reinhardtii, the pyrenoid is
connected to biogenesis centers involved in the assembly
of PSII (but not PSI), as ribosomes and mRNAs encod-
ing PSII subunits are localized in the pyrenoid periphery
(Uniacke and Zerges 2007). In addition, PSII mutants
impaired in PSII assembly showed an accumulation of
early PSII intermediates at the pyrenoid (Uniacke and
Zerges 2007). A similar process in diatoms could maybe
explain the presence of PSII subunits into or in close con-
tact with the pyrenoid of P. tricornutum.

On the other hand, although the role (if any) that
Cc550 could play in the pyrenoid matrix may be a mat-
ter of discussion, it should be related to carbon fixation
or the CCM located in this microcompartment. Interest-
ingly, the existence of two PSII putative Ca2+ binding
PsbP-type proteins, PSBP3 and PSPP4, has been reported
in the pyrenoid of C. reinhardtii (Mackinder et al. 2017).
However, there is no evidence of the presence of equiva-
lent PsbP-like proteins in diatoms. Actually, PsbP is con-
sidered to be evolutionarily recruited as a replacement
of Cc550 in the photosynthetic green lineage, playing
a similar role stabilizing the binding of Ca2+, and thus
increasing PSII affinity for this ion (Frazão et al. 2001,
Roncel et al. 2012). Moreover, a Ca2+-binding protein
(CAS) has been also recently shown to specifically local-
ize into the intrapyrenoid thylakoids of C. reinhardtii
(Wang et al. 2016). Thus, the presence of Cc550 in the
pyrenoid of P. tricornutum could be related to its role as
a calcium-binding stabilizing protein.
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