31 research outputs found

    Radiation heating in selected NERVA engine components

    Get PDF
    The role of heating from nuclear radiation in design of the NERVA engine is treated. Some components are subjected to very high gamma heating rates in excess of 0.5 Btu/cubic inch/sec in steel in the primary nozzle or 0.25 Btu/cubic inch/sec in aluminum in the pressure vessel. These components must be cooled by a fraction of the liquid hydrogen propellant before it is passed through the core, heated, and expanded out the nozzle as a gas. Other components that are subjected to lower heating rates such as the thrust structure and the disk shield are designed so that they would not require liquid hydrogen cooling. Typical gamma and neutron heating rates, resulting temperatures, and their design consequences are discussed. Calculational techniques used in the nuclear and thermal analyses of the NERVA engine are briefly treated

    Biomimetic self-assembling copolymer-hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate

    Get PDF
    Citrate binds strongly to the surface of calcium phosphate (apatite) nanocrystals in bone and is thought to prevent crystal thickening. In this work, citrate added as a regulatory element enabled molecular control of the size and stability of hydroxyapatite (HAp) nanocrystals in synthetic nanocomposites, fabricated with self-assembling block copolymer templates. The decrease of the HAp crystal size within the polymer matrix with increasing citrate concentration was documented by solid-state nuclear magnetic resonance (NMR) techniques and wide-angle X-ray diffraction (XRD), while the shapes of HAp nanocrystals were determined by transmission electron microscopy (TEM). Advanced NMR techniques were used to characterize the interfacial species and reveal enhanced interactions between mineral and organic matrix, concomitant with the size effects. The surface-to-volume ratios determined by NMR spectroscopy and long-range 31P{1H} dipolar dephasing show that 2, 10, and 40 mM citrate changes the thicknesses of the HAp crystals from 4 nm without citrate to 2.9, 2.8, and 2.3 nm, respectively. With citrate concentrations comparable to those in body fluids, HAp nanocrystals of sizes and morphologies similar to those in avian and bovine bones have been produced
    corecore