2,859 research outputs found

    Crosstalk between nanotube devices: contact and channel effects

    Full text link
    At reduced dimensionality, Coulomb interactions play a crucial role in determining device properties. While such interactions within the same carbon nanotube have been shown to have unexpected properties, device integration and multi-nanotube devices require the consideration of inter-nanotube interactions. We present calculations of the characteristics of planar carbon nanotube transistors including interactions between semiconducting nanotubes and between semiconducting and metallic nanotubes. The results indicate that inter-tube interactions affect both the channel behavior and the contacts. For long channel devices, a separation of the order of the gate oxide thickness is necessary to eliminate inter-nanotube effects. Because of an exponential dependence of this length scale on dielectric constant, very high device densities are possible by using high-k dielectrics and embedded contacts

    Ultrafast dynamics of a magnetic antivortex - Micromagnetic simulations

    Get PDF
    The antivortex is a fundamental magnetization structure which is the topological counterpart of the well-known magnetic vortex. We study here the ultrafast dynamic behavior of an isolated antivortex in a patterned Permalloy thin-film element. Using micromagnetic simulations we predict that the antivortex response to an ultrashort external field pulse is characterized by the production of a new antivortex as well as of a temporary vortex, followed by an annihilation process. These processes are complementary to the recently reported response of a vortex and, like for the vortex, lead to the reversal of the orientation of the antivortex core region. In addition to its fundamental interest, this dynamic magnetization process could be used for the generation and propagation of spin waves for novel logical circuits.Comment: 4 pages, 4 figures. To be published in Physical Review B (R

    Passage Recall: Schema Change and Cognitive Flexibility

    Get PDF
    Investigated the effects of subsequent related information and individual differences in cognitive flexibility on prose recall. 70 undergraduates read a passage and then were given either consistent or contradictory incidental information. Errors in cued recall, reflecting the nature of the subsequent information, were more frequently produced after a 3-wk delay than after 2 days. These results were consistent with R. J. Spiro\u27s (1975) findings with free recall. In addition, 3-wk Ss were more confident about correct recall than errors, indicating that errors resulted, in part, from retrieval processes. The negative relationship of spontaneous flexibility and the positive relationship of adaptive flexibility to constructive error are interpreted in terms of storage and retrieval effects in memory

    Ensemble inequivalence in systems with long-range interactions

    Full text link
    Ensemble inequivalence has been observed in several systems. In particular it has been recently shown that negative specific heat can arise in the microcanonical ensemble in the thermodynamic limit for systems with long-range interactions. We display a connection between such behaviour and a mean-field like structure of the partition function. Since short-range models cannot display this kind of behaviour, this strongly suggests that such systems are necessarily non-mean field in the sense indicated here. We illustrate our results showing an application to the Blume-Emery-Griffiths model. We further show that a broad class of systems with non-integrable interactions are indeed of mean-field type in the sense specified, so that they are expected to display ensemble inequivalence as well as the peculiar behaviour described above in the microcanonical ensemble.Comment: 12 pages, no figure

    Conductance of Distorted Carbon Nanotubes

    Full text link
    We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant σ\sigma-π\pi hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.Comment: 5 pages RevTeX including 4 figures, submitted to PR

    Calibration of a two-phase xenon time projection chamber with a 37^{37}Ar source

    Full text link
    We calibrate a two-phase xenon detector at 0.27 keV in the charge channel and at 2.8 keV in both the light and charge channels using a 37^{37}Ar source that is directly released into the detector. We map the light and charge yields as a function of electric drift field. For the 2.8 keV peak, we calculate the Thomas-Imel box parameter for recombination and determine its dependence on drift field. For the same peak, we achieve an energy resolution, Eσ/EmeanE_{\sigma}/E_{mean}, between 9.8% and 10.8% for 0.1 kV/cm to 2 kV/cm electric drift fields.Comment: 12 pages, 7 figure

    Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions

    Get PDF
    We studied tree height in stands of high-Andean&nbsp;Polylepis&nbsp;forests in two cordilleras near Cuzco (Peru) with respect to variations in human impact and climatic conditions, and compared air and soil temperatures between qualitatively defined dry and humid slopes. We studied 46 forest plots of 100 m2&nbsp;of five&nbsp;Polylepis&nbsp;species at 3560&ndash;4680 m. We measured diameter at breast height (dbh) and tree height in the stands (1229 trees in total), as well as air and soil temperatures in a subset of plots. The data was analyzed combining plots of given species from different sites at the same elevation (&plusmn;100 m). There was no elevational decrease of mean maximum tree height across the entire data set. On humid slopes, tree height decreased continuously with elevation, whereas on dry slopes it peaked at middle elevations. With mean maximum tree heights of 9 m at 4530 m on the humid slopes and of 13 m at 4650 m on the dry slopes, we here document the tallest high-elevation forests found so far worldwide. These highest stands grow under cold mean growing season air temperatures (3.6 and 3.8&deg;C on humid vs. dry slopes) and mean growing season soil temperatures (5.1 vs. 4.6&deg;C). Mean annual air and soil temperature both decreased with elevation. Dry slopes had higher mean and maximum growing season air temperatures than humid slopes. Mean annual soil temperatures did not significantly differ and mean annual air temperatures only slightly differed between slopes. However, maximum air temperatures differed on average by 6.6 K between dry and humid slopes. This suggests that the differences in tree height between the two slopes are most likely due to differences in solar radiation as reflected by maximum air temperatures. Our study furthermore provides evidence that alpine&nbsp;Polylepis&nbsp;treelines grow under lower temperature conditions than global high-elevation treelines on average, suggesting that&nbsp;Polylepis&nbsp;species may have evolved special physiological adaptations to low temperatures.</p

    First and second order clustering transitions for a system with infinite-range attractive interaction

    Full text link
    We consider a Hamiltonian system made of NN classical particles moving in two dimensions, coupled via an {\it infinite-range interaction} gauged by a parameter AA. This system shows a low energy phase with most of the particles trapped in a unique cluster. At higher energy it exhibits a transition towards a homogenous phase. For sufficiently strong coupling AA an intermediate phase characterized by two clusters appears. Depending on the value of AA the observed transitions can be either second or first order in the canonical ensemble. In the latter case microcanonical results differ dramatically from canonical ones. However, a canonical analysis, extended to metastable and unstable states, is able to describe the microcanonical equilibrium phase. In particular, a microcanonical negative specific heat regime is observed in the proximity of the transition whenever it is canonically discontinuous. In this regime, {\it microcanonically stable} states are shown to correspond to {\it saddles} of the Helmholtz free energy, located inside the spinodal region.Comment: 4 pages, Latex - 3 EPS Figs - Submitted to Phys. Rev.

    Perioperative morbidity of different operative approaches in early cervical carcinoma: a systematic review and meta-analysis comparing minimally invasive versus open radical hysterectomy

    Get PDF
    Purpose: Radical hysterectomy and pelvic lymphadenectomy is the standard treatment for early cervical cancer. Studies have shown superior oncological outcome for open versus minimal invasive surgery, but peri- and postoperative complication rates were shown vice versa. This meta-analysis evaluates the peri- and postoperative morbidities and complications of robotic and laparoscopic radical hysterectomy compared to open surgery. Methods: Embase and Ovid-Medline databases were systematically searched in June 2020 for studies comparing robotic, laparoscopic and open radical hysterectomy. There was no limitation in publication year. Inclusion criteria were set analogue to the LACC trial. Subgroup analyses were performed regarding the operative technique, the study design and the date of publication for the endpoints intra- and postoperative morbidity, estimated blood loss, hospital stay and operation time. Results: 27 studies fulfilled the inclusion criteria. Five prospective, randomized-control trials were included. Meta-analysis showed no significant difference between robotic radical hysterectomy (RH) and laparoscopic hysterectomy (LH) concerning intra- and perioperative complications. Operation time was longer in both RH (mean difference 44.79 min [95% CI 38.16; 51.42]), and LH (mean difference 20.96 min; [95% CI − 1.30; 43.22]) than in open hysterectomy (AH) but did not lead to a rise of intra- and postoperative complications. Intraoperative morbidity was lower in LH than in AH (RR 0.90 [0.80; 1.02]) as well as in RH compared to AH (0.54 [0.33; 0.88]). Intraoperative morbidity showed no difference between LH and RH (RR 1.29 [0.23; 7.29]). Postoperative morbidity was not different in any approach. Estimated blood loss was lower in both LH (mean difference − 114.34 [− 122.97; − 105.71]) and RH (mean difference − 287.14 [− 392.99; − 181.28]) compared to AH, respectively. Duration of hospital stay was shorter for LH (mean difference − 3.06 [− 3.28; − 2.83]) and RH (mean difference − 3.77 [− 5.10; − 2.44]) compared to AH. Conclusion: Minimally invasive radical hysterectomy appears to be associated with reduced intraoperative morbidity and blood loss and improved reconvalescence after surgery. Besides oncological and surgical factors these results should be considered when counseling patients for radical hysterectomy and underscore the need for new randomized trials. © 2021, The Author(s)
    • …
    corecore