1,641 research outputs found
Fermilab Neutron Therapy Facility / Neutron Spectrum Determination By Threshold Foils
oS(FNDA2006)041 © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence
Calibration of a two-phase xenon time projection chamber with a Ar source
We calibrate a two-phase xenon detector at 0.27 keV in the charge channel and
at 2.8 keV in both the light and charge channels using a Ar source that
is directly released into the detector. We map the light and charge yields as a
function of electric drift field. For the 2.8 keV peak, we calculate the
Thomas-Imel box parameter for recombination and determine its dependence on
drift field. For the same peak, we achieve an energy resolution,
, between 9.8% and 10.8% for 0.1 kV/cm to 2 kV/cm electric
drift fields.Comment: 12 pages, 7 figure
Recommended from our members
Calibration of personal dosemeters in terms of the ICRU operational quantities
The International Commission on Radiological Units and Measurements (ICRU) has defined several new operational quantities for radiation protection purposes. The quantities to be used for personal monitoring are defined at depths in the human body. Because these quantities are impossible to measure directly, the ICRU has recommended that personal dosemeters should be calibrated under simplified conditions on an appropriate phantom, such as the ICRU sphere. The US personal dosimetry accreditation programs make use of a 30 {times} 30 {times} 15 cm polymethymethacrylate (PMMA) phantom, therefore it is necessary to relate the response of dosemeters calibrated on this phantom to the ICRU operational quantities. Calculations of the conversion factors to compute dosemeter response in terms of the operational quantities have been performed using the code MCNP. These calculations have also been compared to experimental measurements using thermoluminescent (TLD) detectors
Conductance of Distorted Carbon Nanotubes
We have calculated the effects of structural distortions of armchair carbon
nanotubes on their electrical transport properties. We found that the bending
of the nanotubes decreases their transmission function in certain energy ranges
and leads to an increased electrical resistance. Electronic structure
calculations show that these energy ranges contain localized states with
significant - hybridization resulting from the increased curvature
produced by bending. Our calculations of the contact resistance show that the
large contact resistances observed for SWNTs are likely due to the weak
coupling of the NT to the metal in side bonded NT-metal configurations.Comment: 5 pages RevTeX including 4 figures, submitted to PR
Personal dose equivalent conversion coefficients for photons to 1 GeV
The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection (ICRP) guidance
Classification of phase transitions and ensemble inequivalence, in systems with long range interactions
Systems with long range interactions in general are not additive, which can
lead to an inequivalence of the microcanonical and canonical ensembles. The
microcanonical ensemble may show richer behavior than the canonical one,
including negative specific heats and other non-common behaviors. We propose a
classification of microcanonical phase transitions, of their link to canonical
ones, and of the possible situations of ensemble inequivalence. We discuss
previously observed phase transitions and inequivalence in self-gravitating,
two-dimensional fluid dynamics and non-neutral plasmas. We note a number of
generic situations that have not yet been observed in such systems.Comment: 42 pages, 11 figures. Accepted in Journal of Statistical Physics.
Final versio
Growth in densely populated Asia: implications for primary product exporters
Economic growth and integration in Asia is rapidly increasing the global economic importance of the region. To the extent that this growth continues and is strongest in natural resource-poor Asian economies, it will add to global demand for imports of primary products, to the benefit of (especially nearby) resource-abundant countries. How will global production, consumption and trade patterns change by 2030 in the course of such economic developments and structural changes? We address this question using the GTAP model and Version 8.1 of the 2007 GTAP database, together with supplementary data from a range of sources, to support projections of the global economy from 2007 to 2030 under various scenarios. Factor endowments and real gross domestic product are assumed to grow at exogenous rates, and trade-related policies are kept unchanged to generate a core baseline, which is compared with an alternative slower growth scenario. We also consider the impact of several policy changes aimed at increasing China's agricultural self-sufficiency relative to the 2030 baseline. Policy implications for countries of the Asia-Pacific region are drawn out in the final section
Electric Field Effect in Ultrathin Films near the Superconductor-Insulator Transition
The effect of an electric field on the conductance of ultrathin films of
metals deposited on substrates coated with a thin layer of amorphous Ge was
investigated. A contribution to the conductance modulation symmetric with
respect to the polarity of the applied electric field was found in regimes in
which there was no sign of glassy behavior. For films with thicknesses that put
them on the insulating side of the superconductor-insulator transition, the
conductance increased with electric field, whereas for films that were becoming
superconducting it decreased. Application of magnetic fields to the latter,
which reduce the transition temperature and ultimately quench
superconductivity, changed the sign of the reponse of the conductance to
electric field back to that found for insulators. We propose that this
symmetric response to capacitive charging is a consequence of changes in the
conductance of the a-Ge layer, and is not a fundamental property of the physics
of the superconductor-insulator transition as previously suggested.Comment: 4 pages text, 4 figure
Nuclear Recoil Scintillation Linearity of a High Pressure He Gas Detector
We investigate scintillation linearity of a commercial high pressure He
gas detector using monoenergetic 2.8 MeV neutrons from a deuterium-deuterium
fusion neutron generator. The scintillation response of the detector was
measured for a range of recoil energies between 83 keV and 626 keV by tagging
neutrons scattering into fixed angles with a far-side organic scintillator
detector. Detailed Monte Carlo simulations were compared to experimental data
to determine the linearity of the detector response by comparing the scaling of
the energy deposits in the simulations to the detector output. In this
analysis, a linear scintillation response corresponds to a consistent value for
the scaling factor between simulated energy deposits and experimental data for
several different scattering angles. We demonstrate that the detector can be
used to detect fast neutron interactions down to 83 keV recoil energies and can
be used to characterize low-energy neutron sources, one of its potential
applications
- …