1,641 research outputs found

    Fermilab Neutron Therapy Facility / Neutron Spectrum Determination By Threshold Foils

    Get PDF
    oS(FNDA2006)041 © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence

    Calibration of a two-phase xenon time projection chamber with a 37^{37}Ar source

    Full text link
    We calibrate a two-phase xenon detector at 0.27 keV in the charge channel and at 2.8 keV in both the light and charge channels using a 37^{37}Ar source that is directly released into the detector. We map the light and charge yields as a function of electric drift field. For the 2.8 keV peak, we calculate the Thomas-Imel box parameter for recombination and determine its dependence on drift field. For the same peak, we achieve an energy resolution, Eσ/EmeanE_{\sigma}/E_{mean}, between 9.8% and 10.8% for 0.1 kV/cm to 2 kV/cm electric drift fields.Comment: 12 pages, 7 figure

    Conductance of Distorted Carbon Nanotubes

    Full text link
    We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant σ\sigma-π\pi hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.Comment: 5 pages RevTeX including 4 figures, submitted to PR

    Personal dose equivalent conversion coefficients for photons to 1 GeV

    Get PDF
    The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection (ICRP) guidance

    Classification of phase transitions and ensemble inequivalence, in systems with long range interactions

    Full text link
    Systems with long range interactions in general are not additive, which can lead to an inequivalence of the microcanonical and canonical ensembles. The microcanonical ensemble may show richer behavior than the canonical one, including negative specific heats and other non-common behaviors. We propose a classification of microcanonical phase transitions, of their link to canonical ones, and of the possible situations of ensemble inequivalence. We discuss previously observed phase transitions and inequivalence in self-gravitating, two-dimensional fluid dynamics and non-neutral plasmas. We note a number of generic situations that have not yet been observed in such systems.Comment: 42 pages, 11 figures. Accepted in Journal of Statistical Physics. Final versio

    Growth in densely populated Asia: implications for primary product exporters

    Get PDF
    Economic growth and integration in Asia is rapidly increasing the global economic importance of the region. To the extent that this growth continues and is strongest in natural resource-poor Asian economies, it will add to global demand for imports of primary products, to the benefit of (especially nearby) resource-abundant countries. How will global production, consumption and trade patterns change by 2030 in the course of such economic developments and structural changes? We address this question using the GTAP model and Version 8.1 of the 2007 GTAP database, together with supplementary data from a range of sources, to support projections of the global economy from 2007 to 2030 under various scenarios. Factor endowments and real gross domestic product are assumed to grow at exogenous rates, and trade-related policies are kept unchanged to generate a core baseline, which is compared with an alternative slower growth scenario. We also consider the impact of several policy changes aimed at increasing China's agricultural self-sufficiency relative to the 2030 baseline. Policy implications for countries of the Asia-Pacific region are drawn out in the final section

    Electric Field Effect in Ultrathin Films near the Superconductor-Insulator Transition

    Full text link
    The effect of an electric field on the conductance of ultrathin films of metals deposited on substrates coated with a thin layer of amorphous Ge was investigated. A contribution to the conductance modulation symmetric with respect to the polarity of the applied electric field was found in regimes in which there was no sign of glassy behavior. For films with thicknesses that put them on the insulating side of the superconductor-insulator transition, the conductance increased with electric field, whereas for films that were becoming superconducting it decreased. Application of magnetic fields to the latter, which reduce the transition temperature and ultimately quench superconductivity, changed the sign of the reponse of the conductance to electric field back to that found for insulators. We propose that this symmetric response to capacitive charging is a consequence of changes in the conductance of the a-Ge layer, and is not a fundamental property of the physics of the superconductor-insulator transition as previously suggested.Comment: 4 pages text, 4 figure

    Nuclear Recoil Scintillation Linearity of a High Pressure 4^4He Gas Detector

    Full text link
    We investigate scintillation linearity of a commercial high pressure 4^4He gas detector using monoenergetic 2.8 MeV neutrons from a deuterium-deuterium fusion neutron generator. The scintillation response of the detector was measured for a range of recoil energies between 83 keV and 626 keV by tagging neutrons scattering into fixed angles with a far-side organic scintillator detector. Detailed Monte Carlo simulations were compared to experimental data to determine the linearity of the detector response by comparing the scaling of the energy deposits in the simulations to the detector output. In this analysis, a linear scintillation response corresponds to a consistent value for the scaling factor between simulated energy deposits and experimental data for several different scattering angles. We demonstrate that the detector can be used to detect fast neutron interactions down to 83 keV recoil energies and can be used to characterize low-energy neutron sources, one of its potential applications
    corecore