17 research outputs found

    MITS: the Multi-Imaging Transient Spectrograph for SOXS

    Get PDF
    The Son Of X-Shooter (SOXS) is a medium resolution spectrograph R~4500 proposed for the ESO 3.6 m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m=1) as the main dispersers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is >60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings describing the full SOXS instrument

    Optical design of the SOXS spectrograph for ESO NTT

    Full text link
    An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spectroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the '4C' design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions describing the SOXS design and properties as it is about to face the Final Design Review.Comment: 9 pages, 9 figures, published in SPIE Proceedings 1070

    The Acquisition Camera System for SOXS at NTT

    Full text link
    SOXS (Son of X-Shooter) will be the new medium resolution (R\sim4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.Comment: 9 pages, 7 figures, SPIE conferenc

    Development status of the UV-VIS detector system of SOXS for the ESO-NTT telescope

    Get PDF
    SOXS will be the new spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands by using two different arms: the UV-VIS (350-850 nm), and the NIR (800-2000 nm). In this article, we describe the development status of the visible camera cryostat, the architecture of the acquisition system and the progress in the electronic design. The UV-VIS detector system is based on a CCD detector 44-82 from e2v, a custom detector head, coupled with the ESO continuous flow cryostats (CFC), a custom cooling system, based on a Programmable Logic Controller (PLC), and the New General Controller (NGC) developed by ESO. This paper outlines the development status of the system, describes the design of the different parts that make up the UV-VIS arm and is accompanied by a series of information describing the SOXS design solutions in the mechanics and in the electronics parts. The first tests of the detector system with the UV-VIS camera will be shown.Comment: 10 pager, 13 figure

    SOXS Control Electronics Design

    Get PDF
    SOXS (Son Of X-Shooter) is a unique spectroscopic facility that will operate at the ESO New Technology Telescope (NTT) in La Silla from 2020 onward. The spectrograph will be able to cover simultaneously the UV-VIS and NIR bands exploiting two different arms and a Common Path feeding system. We present the design of the SOXS instrument control electronics. The electronics controls all the movements, alarms, cabinet temperatures, and electric interlocks of the instrument. We describe the main design concept. We decided to follow the ESO electronic design guidelines to minimize project time and risks and to simplify system maintenance. The design envisages Commercial Off-The-Shelf (COTS) industrial components (e.g. Beckhoff PLC and EtherCAT fieldbus modules) to obtain a modular design and to increase the overall reliability and maintainability. Preassembled industrial motorized stages are adopted allowing for high precision assembly standards and a high reliability. The electronics is kept off-board whenever possible to reduce thermal issues and instrument weight and to increase the accessibility for maintenance purpose. The instrument project went through the Preliminary Design Review in 2017 and is currently in Final Design Phase (with FDR in July 2018). This paper outlines the status of the work and is part of a series of contributions describing the SOXS design and properties after the instrument Preliminary Design Review.Comment: 10 pages, 7 figures, to be publised in SPIE Proceedings 10707-9

    Development status of the SOXS instrument control software

    Get PDF
    SOXS (Son Of X-Shooter) is a forthcoming instrument for ESO-NTT, mainly dedicated to the spectroscopic study of transient events and is currently starting the AIT (Assembly, Integration, and Test) phase. It foresees a visible spectrograph, a near-Infrared (NIR) spectrograph, and an acquisition camera for light imaging and secondary guiding. The optimal setup and the monitoring of SOXS are carried out with a set of software-controlled motorized components and sensors. The instrument control software (INS) also manages the observation and calibration procedures, as well as maintenance and self-test operations. The architecture of INS, based on the latest release of the VLT Software (VLT2019), has been frozen; the code development is in an advanced state for what concerns supported components and observation procedures, which run in simulation. In this proceeding we present the INS current status, focusing in particular on the ongoing efforts in the support of two non-standard, "special" devices. The first special device is the piezoelectric slit exchanger for the NIR spectrograph; the second special device is the piezoelectric tip-tilt corrector used for active compensation of mechanical flexures of the instrument.Comment: 8 pages, 4 figure
    corecore