65 research outputs found

    Phosphoinositide 3-kinase: a critical signalling event in pulmonary cells

    Get PDF
    Phosphoinositide 3-kinases (PI-3Ks) are enzymes that generate lipid second messenger molecules, resulting in the activation of multiple intracellular signalling cascades. These events regulate a broad array of cellular responses including survival, activation, differentiation and proliferation and are now recognised to have a key role in a number of physiological and pathophysiological processes in the lung. PI-3Ks contribute to the pathogenesis of asthma by influencing the proliferation of airways smooth muscle and the recruitment of eosinophils, and affect the balance between the harmful and protective responses in pulmonary inflammation and infection by the modulation of granulocyte recruitment, activation and apoptosis. In addition they also seem to exert a critical influence on the malignant phenotype of small cell lung cancer. PI-3K isoforms and their downstream targets thus provide novel therapeutic targets for intervention in a broad spectrum of respiratory diseases

    Complementary Treatment of the Common Cold and Flu with Medicinal Plants - Results from Two Samples of Pharmacy Customers in Estonia

    Get PDF
    The aim of the current survey was to investigate the complementary self-treatment of the common cold and flu with medicinal plants among pharmacy customers in Estonia. A multiple-choice questionnaire listing 10 plants and posing questions on the perceived characteristics of cold and flu, the effectiveness of plants, help-seeking behaviour, self-treatment and sources of information, was distributed to a sample of participants in two medium size pharmacies. The participants were pharmacy customers: 150 in Tallinn (mostly Russian speaking) and 150 in Kuressaare (mostly Estonian speaking). The mean number of plants used by participants was 4.1. Of the respondents, 69% self-treated the common cold and flu and 28% consulted with a general practitioner. In general, medicinal plants were considered effective in the treatment of the above-mentioned illnesses and 56% of the respondents had used exclusively medicinal plants or their combination with OTC medicines and other means of folk medicine for treatment. The use of medicinal plants increased with age and was more frequent among female than male respondents. Among Estonian-speaking customers lime flowers, blackcurrant and camomile were more frequently used, and among Russian speaking customers raspberry and lemon fruits. Regardless of some statistically significant differences in preferred species among different age, education, sex and nationality groups, the general attitude towards medicinal plants for self-treatment of the common cold and flu in Estonia was very favourable. © 2013 Raal et al

    Directional Secretory Response of Double Stranded RNA-Induced Thymic Stromal Lymphopoetin (TSLP) and CCL11/Eotaxin-1 in Human Asthmatic Airways

    Get PDF
    Background Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Methods Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Results Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. Conclusions There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations

    A Diverse Group of Previously Unrecognized Human Rhinoviruses Are Common Causes of Respiratory Illnesses in Infants

    Get PDF
    Human rhinoviruses (HRVs) are the most prevalent human pathogens, and consist of 101 serotypes that are classified into groups A and B according to sequence variations. HRV infections cause a wide spectrum of clinical outcomes ranging from asymptomatic infection to severe lower respiratory symptoms. Defining the role of specific strains in various HRV illnesses has been difficult because traditional serology, which requires viral culture and neutralization tests using 101 serotype-specific antisera, is insensitive and laborious.To directly type HRVs in nasal secretions of infants with frequent respiratory illnesses, we developed a sensitive molecular typing assay based on phylogenetic comparisons of a 260-bp variable sequence in the 5' noncoding region with homologous sequences of the 101 known serotypes. Nasal samples from 26 infants were first tested with a multiplex PCR assay for respiratory viruses, and HRV was the most common virus found (108 of 181 samples). Typing was completed for 101 samples and 103 HRVs were identified. Surprisingly, 54 (52.4%) HRVs did not match any of the known serotypes and had 12-35% nucleotide divergence from the nearest reference HRVs. Of these novel viruses, 9 strains (17 HRVs) segregated from HRVA, HRVB and human enterovirus into a distinct genetic group ("C"). None of these new strains could be cultured in traditional cell lines.By molecular analysis, over 50% of HRV detected in sick infants were previously unrecognized strains, including 9 strains that may represent a new HRV group. These findings indicate that the number of HRV strains is considerably larger than the 101 serotypes identified with traditional diagnostic techniques, and provide evidence of a new HRV group

    Inhibition of glycogen synthase kinase 3-b is sufficient but not required for airway smooth muscle hypertrophy.

    No full text
    We examined the role of glycogen synthase kinase-3β (GSK-3β) inhibition in airway smooth muscle hypertrophy, a structural change found in patients with severe asthma. LiCl, SB216763, and specific small interfering RNA (siRNA) against GSK-3β, each of which inhibit GSK-3β activity or expression, increased human bronchial smooth muscle cell size, protein synthesis, and expression of the contractile proteins α-smooth muscle actin, myosin light chain kinase, smooth muscle myosin heavy chain, and SM22. Similar results were obtained following treatment of cells with cardiotrophin (CT)-1, a member of the interleukin-6 superfamily, and transforming growth factor (TGF)-β, a proasthmatic cytokine. GSK-3β inhibition increased mRNA expression of α-actin and transactivation of nuclear factors of activated T cells and serum response factor. siRNA against eukaryotic translation initiation factor 2Bε (eIF2Bε) attenuated LiCl- and SB216763-induced protein synthesis and expression of α-actin and SM22, indicating that eIF2B is required for GSK-3β-mediated airway smooth muscle hypertrophy. eIF2Bε siRNA also blocked CT-1- but not TGF-β-induced protein synthesis. Infection of human bronchial smooth muscle cells with pMSCV GSK-3β-A9, a retroviral vector encoding a constitutively active, nonphosphorylatable GSK-3β, blocked protein synthesis and α-actin expression induced by LiCl, SB216763, and CT-1 but not TGF-β. Finally, lungs from ovalbumin-sensitized and -challenged mice demonstrated increased α-actin and CT-1 mRNA expression, and airway myocytes isolated from ovalbumin-treated mice showed increased cell size and GSK-3β phosphorylation. These data suggest that inhibition of the GSK-3β/ eIF2Bε translational control pathway contributes to airway smooth muscle hypertrophy in vitro and in vivo. On the other hand, TGF-β-induced hypertrophy does not depend on GSK-3β/eIF2B signaling. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.http://deepblue.lib.umich.edu/bitstream/2027.42/191157/2/10198.pdfPublished versionDescription of 10198.pdf : Published versio

    Rhinovirus activates interleukin-8 expression via a Src/phosphatidylinositol 3-kinase/Akt signaling pathway in human bronchial epithelial cells.

    Full text link
    Rhinovirus (RV) is responsible for the majority of common colds and triggers exacerbations of asthma and chronic obstructive lung disease. We have shown that RV serotype 39 (RV39) infection activates phosphatidylinositol 3 (PI 3)-kinase and the serine threonine kinase Akt minutes after infection and that the activation of PI 3-kinase and Akt is required for maximal interleukin-8 (IL-8) expression. Here, we further examine the contributions of Src and PI 3-kinase activation to RV-induced Akt activation and IL-8 expression. Confocal fluorescent microscopy of 16HBE14o- human bronchial epithelial cells showed rapid (10-min) colocalization of RV39 with Src, p85α PI 3-kinase, p110β PI 3-kinase, Akt and Cit-Akt-PH, a fluorescent Akt pleckstrin homology domain which binds PI(3,4,5)P3. The chemical Src inhibitor PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine} and the PI 3-kinase inhibitor LY294002 each inhibited Akt phosphorylation and the colocalization of RV39 with Akt. Digoxigenin-tagged RV coprecipitated with a Crosstide kinase likely to be Akt, and inhibition of Src blocked kinase activity. Digoxigenin-tagged RV39 colocalized with the lipid raft marker ceramide. In 16HBE14o- and primary mucociliary differentiated human bronchial epithelial cells, inhibition of Src kinase activity with the Src family chemical inhibitor PP2, dominant-negative Src (K297R), and Src small interfering RNA (siRNA) each inhibited RV39-induced IL-8 expression. siRNA against p110β PI 3-kinase also inhibited IL-8 expression. These data demonstrate that, in the context of RV infection, Src and p110β PI 3-kinase are upstream activators of Akt and the IL-8 promoter and that RV colocalizes with Src, PI 3-kinase, and Akt in lipid rafts. Copyright © 2007, American Society for Microbiology. All Rights Reserved.http://deepblue.lib.umich.edu/bitstream/2027.42/191156/2/2309-06.pdfPublished versionDescription of 2309-06.pdf : Published versio

    p172: An Alveolar Type II and Clara Cell Specific Protein with Late Developmental Expression and Upregulation by Hyperoxic Lung Injury

    Full text link
    The epithelium of the alveolus and distal airway meets unique requirements, functioning as a gas exchange membrane and barrier to alveolar flooding by vascular contents as well as to bloodstream contamination by airborne toxins and pathogens. Gene products specifically expressed by this epithelium, notably the surfactant apoproteins, have had important clinical application. No cell surface antigen specific for alveolar type II and Clara cells has been described. We report the biochemical characterization, tissue and developmental expression, and upregulation by injury of a 172 kD protein recognized by a monoclonal antibody, 3F9, synthesized in response to immunization with freshly isolated rat alveolar type II cells. p172 is expressed in a polarized fashion by the apical surface of rat alveolar type II and Clara cells. An immunohistochemical survey of various rat tissues and organs reveals lung specificity. p172 is first detectable in rare epithelial cells at 19 days of gestation, a time when the fully differentiated alveolar type II cell is identified by the first detection of lamellar bodies. There is a dramatic increase in p172 expression just prior to birth. Hyperoxic lung injury results in increased expression of p172. The upregulation of p172 by hyperoxia and its cell-specific expression suggests an important adaptive function.http://deepblue.lib.umich.edu/bitstream/2027.42/191421/2/girod-et-al-2012-p172-an-alveolar-type-ii-and-clara-cell-specific-protein-with-late-developmental-expression-and.pdfPublished versio

    Deficient inflammasome activation permits an exaggerated asthma phenotype in rhinovirus C-infected immature mice

    No full text
    Compared to other RV species, RV-C has been associated with more severe respiratory illness and is more likely to occur in children with a history of asthma or who develop asthma. We therefore inoculated 6-day-old mice with sham, RV-A1B, or RV-C15. Inflammasome priming and activation were assessed, and selected mice treated with recombinant IL-1β. Compared to RV-A1B infection, RV-C15 infection induced an exaggerated asthma phenotype, with increased mRNA expression of Il5, Il13, Il25, Il33, Muc5ac, Muc5b, and Clca1; increased lung lineage-negative CD25+CD127+ST2+ ILC2s; increased mucous metaplasia; and increased airway responsiveness. Lung vRNA, induction of pro-inflammatory type 1 cytokines, and inflammasome priming (pro-IL-1β and NLRP3) were not different between the two viruses. However, inflammasome activation (mature IL-1β and caspase-1 p12) was reduced in RV-C15-infected mice compared to RV-A1B-infected mice. A similar deficiency was found in cultured macrophages. Finally, IL-1β treatment decreased RV-C-induced type 2 cytokine and mucus-related gene expression, ILC2s, mucous metaplasia, and airway responsiveness but not lung vRNA level. We conclude that RV-C induces an enhanced asthma phenotype in immature mice. Compared to RV-A, RV-C-induced macrophage inflammasome activation and IL-1β are deficient, permitting exaggerated type 2 inflammation and mucous metaplasia.http://deepblue.lib.umich.edu/bitstream/2027.42/175724/2/Deficient inflammasome activation permits an exaggerated asthma phenotype in rhinovirus C-infected immature mice.pdfPublished versio
    • …
    corecore