165 research outputs found

    Gerrymanders and Theories of Law Making: A Study of Legislative Redistricting in Illinois

    Get PDF
    Redistricting politics in Illinois provide a novel opportunity for testing competing theories of law making. With this in mind, we demonstrate that the post-2000 Census redistricters in Illinois, dominated by Democrats, strategically reshuffled district demographic profiles in an attempt to convert relatively liberal Republican districts to conservative Democratic districts in the state Senate while decreasing and increasing the ideological diversity of the Democrats and Republicans, respectively, in the House. Such reshufflings suggest that legislative politics in Illinois are conducted in a manner consistent with vote-buying theories of coalition formation

    Black Candidates and Black Voters: Assessing the Impact of Candidate Race on Uncounted Vote Rates

    Get PDF
    Numerous studies show that the rate at which African‐Americans cast ballots with missing or invalid votes, i.e., the African‐American residual vote rate, is higher than the corresponding white rate. While existing literature argues that the plethora of African‐American residual votes is caused by administrative problems or socioeconomic factors, we show using precinct‐level data from two recent elections in Cook County, Illinois, that the African‐American residual vote rate in electoral contests with black candidates is less than half the rate in contests without black candidates. African Americans, therefore, are able to reduce their residual vote rate when they wish to do so. We present complementary findings for white voters, whose residual vote rate often substantially increases in contests which feature dominant black candidates

    Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii

    Get PDF
    The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. © 2013 Macmillan Publishers Limited. All rights reserved

    Voting Technology, Vote-by-Mail, and Residual Votes in California, 1990-2010

    Get PDF
    This paper examines how the growth in vote-by-mail and changes in voting technologies led to changes in the residual vote rate in California from 1990 to 2010. We find that in California’s presidential elections, counties that abandoned punch cards in favor of optical scanning enjoyed a significant improvement in the residual vote rate. However, these findings do not always translate to other races. For instance, find that the InkaVote system in Los Angeles has been a mixed success, performing very well in presidential and gubernatorial races, fairly well for ballot propositions, and poorly in Senate races. We also conduct the first analysis of the effects of the rise of vote-by-mail on residual votes. Regardless of the race, increased use of the mails to cast ballots is robustly associated with a rise in the residual vote rate. The effect is so strong that the rise of voting by mail in California has mostly wiped out all the reductions in residual votes that were due to improved voting technologies since the early 1990s

    Identification of functional differences between recombinant human α and β cardiac myosin motors

    Get PDF
    The myosin isoform composition of the heart is dynamic in health and disease and has been shown to affect contractile velocity and force generation. While different mammalian species express different proportions of α and β myosin heavy chain, healthy human heart ventricles express these isoforms in a ratio of about 1:9 (α:β) while failing human ventricles express no detectable α-myosin. We report here fast-kinetic analysis of recombinant human α and β myosin heavy chain motor domains. This represents the first such analysis of any human muscle myosin motor and the first of α-myosin from any species. Our findings reveal substantial isoform differences in individual kinetic parameters, overall contractile character, and predicted cycle times. For these parameters, α-subfragment 1 (S1) is far more similar to adult fast skeletal muscle myosin isoforms than to the slow β isoform despite 91% sequence identity between the motor domains of α- and β-myosin. Among the features that differentiate α- from β-S1: the ATP hydrolysis step of α-S1 is ~ten-fold faster than β-S1, α-S1 exhibits ~five-fold weaker actin affinity than β-S1, and actin·α-S1 exhibits rapid ADP release, which is >ten-fold faster than ADP release for β-S1. Overall, the cycle times are ten-fold faster for α-S1 but the portion of time each myosin spends tightly bound to actin (the duty ratio) is similar. Sequence analysis points to regions that might underlie the basis for this finding

    Proceedings of the Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    Get PDF
    The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized. The Think Tank\u27s contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies
    corecore