41 research outputs found

    Growth factor and co-receptor release by structural regulation of substrate metalloprotease accessibility

    Get PDF
    Release of cytokines, growth factors and other life-essential molecules from precursors by a-disintegrin-and-metalloproteases (ADAMs) is regulated with high substrate-specificity. We hypothesized that this is achieved by cleavage-regulatory intracellular-domain (ICD)-modifications of the precursors. We show here that cleavage-stimuli-induced specific ICD-modifications cause structural substrate changes that enhance ectodomain sensitivity of neuregulin-1 (NRG1; epidermal-growth-factor) or CD44 (receptor-tyrosine-kinase (RTK) co-receptor) to chymotrypsin/trypsin or soluble ADAM. This inside-out signal transfer required substrate homodimerization and was prevented by cleavage-inhibitory ICD-mutations. In chimeras, regulation could be conferred to a foreign ectodomain, suggesting a common higher-order structure. We predict that substrate-specific protease-accessibility-regulation controls release of numerous ADAM substrates

    Identification of kidney injury released circulating osteopontin as causal agent of respiratory failure

    Get PDF
    Tissue injury can drive secondary organ injury; however, mechanisms and mediators are not well understood. To identify interorgan cross-talk mediators, we used acute kidney injury (AKI)-induced acute lung injury (ALI) as a clinically important example. Using kidney and lung single-cell RNA sequencing after AKI in mice followed by ligand-receptor pairing analysis across organs, kidney ligands to lung receptors, we identify kidney-released circulating osteopontin (OPN) as a novel AKI-ALI mediator. OPN release from kidney tubule cells triggered lung endothelial leakage, inflammation, and respiratory failure. Pharmacological or genetic OPN inhibition prevented AKI-ALI. Transplantation of ischemi

    Loss of Trop2 causes ErbB3 activation through a neuregulin-1-dependent mechanism in the mesenchymal subtype of HNSCC

    Get PDF
    In head and neck squamous cell cancer (HNSCC), four intrinsic subtypes (or groups) have been identified, and each one possesses a unique biology that will require specific treatment strategies. We previously reported that mesenchymal (group 2) tumors exhibit reduced levels of Trop2 expression. In this study, we investigated the functional role of Trop2 in HNSCC and find that loss results in autocrine activation of the EGFR family member ErbB3 via neuregulin-1. Trop2 localizes to both the cell surface and cytosol of HNSCC cells and forms a complex with neuregulin-1, which is predominantly cytosolic. Inactivation of Trop2 increases the concentration of neuregulin-1 at the cell surface where it is cleaved to activate ErbB3. In primary HNSCC, detection of ErbB3 activation was limited to Trop2 negative tumors. An analysis of the Cancer Genome Atlas (TCGA) HNSCC dataset confirms enrichment for ErbB3 activity in mesenchymal tumors. Notably, Trop2 loss triggers sensitivity to anti-ErbB3 antibodies, which results in reduced proliferation and tumorigenic growth of Trop2 negative HNSCC cancer cells. These results uncover a molecular mechanism by which tumor cells control the amount of cell-surface neuregulin-1 available for cleavage and ErbB3 activation. Moreover, we demonstrate that Trop2 is a potential surrogate biomarker to identify tumors with ErbB3 activation and may therefore respond to anti-ErbB3 therapeutics

    ADAM17 substrate release in proximal tubule drives kidney fibrosis

    Get PDF
    Kidney fibrosis following kidney injury is an unresolved health problem and causes significant morbidity and mortality worldwide. In a study into its molecular mechanism, we identified essential causative features. Acute or chronic kidney injury causes sustained elevation of a disintegrin and metalloprotease 17 (ADAM17); of its cleavage-activated proligand substrates, in particular of pro-TNFα and the EGFR ligand amphiregulin (pro-AREG); and of the substrates\u27 receptors. As a consequence, EGFR is persistently activated and triggers the synthesis and release of proinflammatory and profibrotic factors, resulting in macrophage/neutrophil ingress and fibrosis. ADAM17 hypomorphic mice, specific ADAM17 inhibitor-treated WT mice, or mice with inducible KO of ADAM17 in proximal tubule (Slc34a1-Cre) were significantly protected against these effects. In vitro, in proximal tubule cells, we show that AREG has unique profibrotic actions that are potentiated by TNFα-induced AREG cleavage. In vivo, in acute kidney injury (AKI) and chronic kidney disease (CKD, fibrosis) patients, soluble AREG is indeed highly upregulated in human urine, and both ADAM17 and AREG expression show strong positive correlation with fibrosis markers in related kidney biopsies. Our results indicate that targeting of the ADAM17 pathway represents a therapeutic target for human kidney fibrosis

    FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury

    Get PDF
    The proximal tubule has a remarkable capacity for repair after acute injury, but the cellular lineage and molecular mechanisms underlying this repair response are incompletely understood. Here, we developed a Kim1-GFPCreERt2 knockin mouse line (Kim1-GCE) in order to perform genetic lineage tracing of dedifferentiated cells while measuring the cellular transcriptome of proximal tubule during repair. Acutely injured genetically labeled clones coexpressed KIM1, VIMENTIN, SOX9, and KI67, indicating a dedifferentiated and proliferative state. Clonal analysis revealed clonal expansion of Kim1+ cells, indicating that acutely injured, dedifferentiated proximal tubule cells, rather than fixed tubular progenitor cells, account for repair. Translational profiling during injury and repair revealed signatures of both successful and unsuccessful maladaptive repair. The transcription factor Foxm1 was induced early in injury, was required for epithelial proliferation in vitro, and was dependent on epidermal growth factor receptor (EGFR) stimulation. In conclusion, dedifferentiated proximal tubule cells effect proximal tubule repair, and we reveal an EGFR/FOXM1-dependent signaling pathway that drives proliferative repair after injury

    Cognitive behavioural therapy versus supportive therapy for persistent positive symptoms in psychotic disorders: The POSITIVE Study, a multicenter, prospective, single-blind, randomised controlled clinical trial

    Get PDF
    Background: It has been demonstrated that cognitive behavioural therapy (CBT) has a moderate effect on symptom reduction and on general well being of patients suffering from psychosis. However, questions regarding the specific efficacy of CBT, the treatment safety, the cost-effectiveness, and the moderators and mediators of treatment effects are still a major issue. The major objective of this trial is to investigate whether CBT is specifically efficacious in reducing positive symptoms when compared with non-specific supportive therapy (ST) which does not implement CBT-techniques but provides comparable therapeutic attention. Methods: The POSITIVE study is a multicenter, prospective, single-blind, parallel group, randomised clinical trial, comparing CBT and ST with respect to the efficacy in reducing positive symptoms in psychotic disorders. CBT as well as ST consist of 20 sessions altogether, 165 participants receiving CBT and 165 participants receiving ST. Major methodological aspects of the study are systematic recruitment, explicit inclusion criteria, reliability checks of assessments with control for rater shift, analysis by intention to treat, data management using remote data entry, measures of quality assurance (e.g. on-site monitoring with source data verification, regular query process), advanced statistical analysis, manualized treatment, checks of adherence and competence of therapists. Research relating the psychotherapy process with outcome, neurobiological research addressing basic questions of delusion formation using fMRI and neuropsychological assessment and treatment research investigating adaptations of CBT for adolescents is combined in this network. Problems of transfer into routine clinical care will be identified and addressed by a project focusing on cost efficiency. Discussion: This clinical trial is part of efforts to intensify psychotherapy research in the field of psychosis in Germany, to contribute to the international discussion on psychotherapy in psychotic disorders, and to help implement psychotherapy in routine care. Furthermore, the study will allow drawing conclusions about the mediators of treatment effects of CBT of psychotic disorders. Trial Registration Current Controlled Trials ISRCTN2924287
    corecore