522 research outputs found

    Effects of Aggregate Shape on the Stability of Bituminous Mixes

    Get PDF

    Thermal Constraints from Siderophile Trace Elements in Acapulcoite-Lodranite Metals

    Get PDF
    A fundamental process in the formation of differentiated bodies is the segregation of metal-sulfide and silicate phases, leading to the formation of a metallic core. The only known direct record of this process is preserved in some primitive achondrites, such as the acapulcoite-lodranites. Meteorites of this clan are the products of thermal metamorphism of a chondritic parent. Most acapulcoites have experienced significant partial melting of the metal-sulfide system but not of silicates, while lodranites have experienced partial melting and melt extraction of both. The clan has experienced a continuum of temperatures relevant to the onset of metal mobility in asteroidal bodies and thus could yield insight into the earliest stages of core formation. Acapulcoite GRA 98028 contains relict chondrules, high modal sulfide/metal, has the lowest 2-pyroxene closure temperature, and represents the least metamorphosed state of the parent body among the samples examined. Comparison of the metal-sulfide component of other clan members to GRA 98028 can give an idea of the effects of metamorphism

    Petrography and Geochemistry of Metals in Almahata Sitta Ureilites

    Get PDF
    Ureilites are ultramafic achondrites, predominantly composed of olivine and pyroxenes with accessory carbon, metal and sulfide. The majority of ureilites are believed to represent the mantle of the ureilite parent body (UPB) [1]. Although ureilites have lost much of their original metal [2], the metal that remains retains a record of the formative processes. Almahata Sitta is predominantly composed of unbrecciated ureilites with a wide range of silicate compositions [3,4]. As a fall it presents a rare opportunity to examine fresh ureilite metal in-situ, and analyzing their highly siderophile element (HSE) ratios gives clues to their formation. Bulk siderophile element analyses of Almahata Sitta fall within the range observed in other ureilites [5]. We have examined the metals in seven ureilitic samples of Almahata Sitta (AS) and one associated chondrite fragment (AS#25)

    A Cabonaceous Chondrite Dominated Lithology from the HED Parent; PRA 04401

    Get PDF
    The paired howardite breccias Mt. Pratt (PRA) 04401 and PRA 04402 are notable for their high proportion of carbonaceous chondrite clasts [1]. They consist predominantly of coarse (0.1-7 mm) diogenite (orthopyroxene), eucrite (plagioclase + pyroxene), and carbonaceous chondrite clasts set in a finer grained matrix of these same materials. Coarse C-chondrite clasts up to 7 mm are composed mainly of fine-grained phyllosilicates with lesser sulfides and high-mg# anhydrous magnesian silicates. Most of these clasts appear to be texturally consistent with CM2 classification [1] and some contain relict chondrules. The clasts are angular and reaction or alteration textures are not apparent in the surrounding matrix. PRA 04401 contains about 70 modal% C-chondrite clasts while PRA 04402 contains about 7%. Although many howardites are known to contain abundant C-chondrite clasts [2,3,4], PRA 04401 is, to our knowledge, the most chondrite-rich howardite lithology identified to date. Low EPMA totals from CM2-type clasts in other howardites suggest that they frequently contain 10 wt% or more water [2], a figure consistent with their mineralogy. PRA 04401, therefore, demonstrates the potential for hydrous lithologies with greater than 5 wt% water to occur locally within the nominally anhydrous HED parent body. Since the origin of this water is xenogenic, it might therefore be concentrated in portions of the asteroid surface where it would be more readily observable by remote sensing techniques. We plan to further examine C-chondrite clasts in PRA 04401/2 with the intent of establishing firm chemical classification, estimating water content, and evaluating their relationship with the host breccia. To help place them in context of the HED parent, we will also compare these breccias with other howardites to evaluate which lithologies are likely to be more prevalent on the asteroid surface

    Using the Uganda National Panel Survey to Analyze the Effect of Staple Food Consumption on Undernourishment in Ugandan children

    Get PDF
    Background: The United Nations’ Millennium Development Goals Report, 2015, documents that, since 1990, the number of stunted children in sub-Saharan Africa has increased by 33% even though it has fallen in all other world regions. Recognizing this, in 2011 the Government of Uganda implemented a 5-year Nutrition Action Plan. One important tenet of the Plan is to lessen malnutrition in young children by discouraging over-consumption of nutritionally deficient, but plentiful, staple foods, which it defines as a type of food insecurity. Methods: We use a sample of 6101 observations on 3427 children age five or less compiled from three annual waves of the Uganda National Panel Survey to measure undernourishment. We also use the World Health Organization’s Child Growth Standards to create a binary variable indicating stunting and another indicating wasting for each child in each year. We then use random effects to estimate binary logistic regressions that show that greater staple food concentrations affect the probability of stunting and wasting. Results: The estimated coefficients are used to compute adjusted odds ratios (OR) that estimate the effect of greater staple food concentration on the likelihood of stunting and the likelihood of wasting. Controlling for other relevant covariates, these odds ratios show that a greater proportion of staple foods in a child’s diet increases the likelihood of stunting (OR = 1.007, p = 0.005) as well as wasting (OR = 1.011, p = 0.034). Stunting is confirmed with subsamples of males only (OR = 1.006, p = 0.05) and females only (OR = 1.008, p = 0.027), suggesting that the finding is not gender specific. Another subsample of children aged 12 months or less, most of whom do not yet consume solid food, shows no statistically significant relationship, thus supporting the validity of the other findings. Conclusion: Diets containing larger proportions of staple foods are associated with greater likelihoods of both stunting and wasting in Ugandan children. Other causes of stunting and wasting identified in past research are also confirmed with the Uganda data. Finally, the analysis provides clues to other possible causes of undernourishment in young children

    Removal and Replacement of Primary Metal in Ferroan Lodranite MAC 88177

    Get PDF
    Collectively, acapulcoites and lodranites form a clan of primitive achondrites generally thought to have originated from the same parent body on the basis of similarities in petrology, mineral compositions, bulk compositions, cosmic ray exposure ages and oxygen isotope compositions, although considerable variation in some of these parameters has shown that the parent body was not entirely uniform. The presence of relict chondrules in several acapulcoites indicates that all were likely derived from chondrite-like precursor materials. The transition from acapulcoite to lodranite is gradual and corresponds to increasing metamorphic grade. Lodranites are generally coarser grained, but petrographic distinction between the two groups can also be made by modal abundances of troilite and plagioclase. Depletion of both these phases and incompatible lithophile trace elements in lodranites is consistent with their restitic origin formed by greater than 10% extraction of basaltic melt. Magnesian lodranites (e.g. Gibson, GRA 95209, Y-75274, Y-8002), some of which might also be considered transitional acapulcoites, have mineral and chemical compositions consistent with derivation by thermal metamorphism and partial melt extraction from acapulcoites, as would seem logical if samples represented different grades of metamorphism along a linear evolution trend. Ferromagnesian silicates in these lodranites tend to be displaced toward lower fe# (opx fe# 4-6) than the distribution observed in acapulcoites (opx fe# 6-11). A subset of lodranites, termed ferroan lodranites (e.g. FRO 90011, LEW 88280, Lodran, MAC 88177, Y-74357, Y- 791491/Y-791493), have ferromagnesian silicate minerals that are too Fe-rich (fe#>10) to have formed as simple restites from any known acapulcoite. Like silicates, metal-sulfide systematics of the ferroan lodranites are also inconsistent with a simple restitic origin. Logically, restitic lodranites should have been depleted in FeS during extraction of partial melts, since melting of the metal-sulfide system initiates at lower temperatures than melting of silicates. Yet, puzzingly, ferroan lodranites contain significant quantities (1.9-5.3 modal%) of troilite, indicating either (1) metal sulfide partial melts were retained during basaltic melt extraction or (2) later infusion of metal sulfide melts has occurred. In this study, we use trace siderophile elements in metals to assess the relative importance of each in creating the observed troilite enrichment

    History of Metal Veins in Acapulcoite-Lodranite Clan Meteorite GRA 95209

    Get PDF
    Graves Nunataks (GRA) 95209 has been hailed as the missing link of core formation processes in the acapulcoitelodranite parent asteroid because of the presence of a complex cm-scale metal vein network. Because the apparent liquid temperature of the metal vein (approximately 1500 C) is higher than inferred for the metamorphic grade of the meteorite, questions regarding the vein s original composition, temperature, and mechanism of emplacement have arisen. We have determined trace siderophile element compositions of metals in veins and surrounding matrix in an effort to clarify matters. We analyzed metals in GRA 95209 in a portion of thick metal vein and adjacent metal-rich (30-40 modal%), sulfide poor (less than 1%) matrix by EPMA and LA-ICP-MS for major and trace siderophile elements using methods described by [3]. We also examined metals from a metal-poor (approximately 15 modal%) and relatively sulfide-rich (2-5 modal%) region of the sample. Kamacite is the dominant metal phase in all portions of the sample. In comparison to matrix metal, vein metal contains more schreibersite and less tetrataenite, and is less commonly associated with Fe,Mn,Mg-bearing phosphates and graphite. Vein kamacite contains higher Co, P, and Cr and lower Cu and Ge. These minor variations aside, all metal types in GRA 95209 are fairly homogeneous in terms of their levels of enrichment of compatible siderophile elements (e.g. Pt, Ir, Os) relative to incompatible siderophile elements (e.g. As, Pd, Au), consistent with the loss of metal-sulfide partial melt that characterizes much of the clan. Whatever compositional differences between matrix and vein metal that may have originally existed, they have since largely co-equilibrated to similar restitic trace element compositions. We agree with [2] that metal veins, in their present state, do not represent a liquid composition. The original vein liquid was much more S-rich and emplaced at correspondingly lower liquid temperatures. Much of the Fe,Ni component solidified in cm scale conduits while S-rich melts were expelled and continued to migrate by percolation. The higher troilite content in metal poor regions of the sample results mostly from trapping of a small portion of these melts. The troilite is not remnant primary sulfide. Strong depletions of W, Mo, and especially Ga (greater than 50%, greater than 60%, and greater than 90% depletion, respectively) in metals of the metalpoor GRA 95209 lithology are localized at scales of 10-100 micrometers in the vicinity of graphite spherules. These depletions must have occurred below the temperatures at which cm-scale equilibration occurred, and future work will seek to determine their cause

    Trends in Drug Utilization, Glycemic Control, and Rates of Severe Hypoglycemia, 2006-2013.

    Get PDF
    ObjectiveTo examine temporal trends in utilization of glucose-lowering medications, glycemic control, and rate of severe hypoglycemia among patients with type 2 diabetes (T2DM).Research design and methodsUsing claims data from 1.66 million privately insured and Medicare Advantage patients with T2DM from 2006 to 2013, we estimated the annual 1) age- and sex-standardized proportion of patients who filled each class of agents; 2) age-, sex-, race-, and region-standardized proportion with hemoglobin A1c (HbA1c) <6%, 6 to <7%, 7 to <8%, 8 to <9%, ≥9%; and 3) age- and sex-standardized rate of severe hypoglycemia among those using medications. Proportions were calculated overall and stratified by age-group (18-44, 45-64, 65-74, and ≥75 years) and number of chronic comorbidities (zero, one, and two or more).ResultsFrom 2006 to 2013, use increased for metformin (from 47.6 to 53.5%), dipeptidyl peptidase 4 inhibitors (0.5 to 14.9%), and insulin (17.1 to 23.0%) but declined for sulfonylureas (38.8 to 30.8%) and thiazolidinediones (28.5 to 5.6%; all P < 0.001). The proportion of patients with HbA1c <7% declined (from 56.4 to 54.2%; P < 0.001) and with HbA1c ≥9% increased (9.9 to 12.2%; P < 0.001). Glycemic control varied by age and was poor among 23.3% of the youngest and 6.3% of the oldest patients in 2013. The overall rate of severe hypoglycemia remained the same (1.3 per 100 person-years; P = 0.72), declined modestly among the oldest patients (from 2.9 to 2.3; P < 0.001), and remained high among those with two or more comorbidities (3.2 to 3.5; P = 0.36).ConclusionsDuring the recent 8-year period, the use of glucose-lowering drugs has changed dramatically among patients with T2DM. Overall glycemic control has not improved and remains poor among nearly a quarter of the youngest patients. The overall rate of severe hypoglycemia remains largely unchanged
    • …
    corecore