1,423 research outputs found

    U. S. Trade in Tuna for Canning, 1987

    Get PDF
    U.S. tuna fleet activity, canned tuna processing, ex-vessel, wholesale and retail prices and imports in 1987 are described and compared to their counterparts in previous years. Industry statistics gathered from government agencies and industry contacts are presented in 14 figures and 8 tables. In 1987, U.S. tuna fisheries delivered 253,136 short tons (tons) of tuna to U.S. canneries. Domestic deliveries of albacore (white-meat) tuna were 2,836 tons, down 20 percent from 1986 levels. Domestic deliveries of tropical (light-meat) tuna (bigeye, blackfin, bluefin, skipjack, and yellowfin) were 251,000 tons, up 12 percent. Contract prices for tuna delivered by U. S. vessels to U. S. canneries increased dramatically in 1987. Depending on the size of fish in the delivery, ex-vessel prices of white-meat tuna increased as much as 27 percent, and prices of light-meat tuna increased as much as 47 percent. U. S. cannery receipts of imported and domestically caught raw frozen tuna for canning totaled 532,704 tons in 1987, up 2 percent from 1986 levels. U.S. cannery receipts of white-meat tuna were 104,197 tons, down 10 percent from 1986. Imports made up 97 percent of the total cannery supply. Total 1987 U. S. cannery receipts of raw, frozen light meat tuna were 428,507 tons, up 5 percent from 1986 levels. Imports made up 41 percent of the total cannery supply. The 1987 U.S. pack of canned tuna was 33.6 million standard cases, up 3 percent from 1986. The pack of white-meat tuna was 7.2 million standard cases, down 11 percent from 1986; the pack of light-meat tuna was 26.4 million standard cases, up 7 percent. U. S. imports of canned tuna in 1987 were 10.8 million standard cases, down 11 percent from 1986 levels, the first time in recent years that imports have declined. Per capita consumption of canned tuna in the United States was 3.5 pounds in 1987, down slightly from 1986. The retail composite price was $2.26 per pound, unchanged from 1986

    Etching silicon by SF₆ in a continuous and pulsed power helicon reactor

    No full text
    The etch rate of silicon by SF₆ in a helicon reactor has been measured along with simultaneous actinometric measurements of the concentration of atomic fluorine in the gas phase for a variety of gas flow rates resulting in pressures in the mTorr range. A bias rf power was applied to the substrate to investigate the effect of ion energy on the etch rate. The etch rate was found to be proportional to the fluorine concentration and independent of the bias for the higher gas flow rates. However, at lower flow rates, the situation was more complicated and no simple model can explain the measurements.Measurements of the etch rate were also made in the afterglow of a repetitively pulsed discharge so that the directed ion energy would be reduced to the thermal motion after the rapid collapse of the plasma potential. A simple model was developed to explain the temporal etching phenomena in terms of the lifetime of the atomic fluorine

    Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data

    Get PDF
    Tropical forests are huge reservoirs of terrestrial carbon and are experiencing rapid degradation and deforestation. Understanding forest structure proves vital in accurately estimating both forest biomass and also the natural disturbances and remote sensing is an essential method for quantification of forest properties and structure in the tropics. Our objective is to examine canopy vegetation profiles formulated from discrete return LIght Detection And Ranging (lidar) data and examine their usefulness in estimating forest structural parameters measured during a field campaign. We developed a modeling procedure that utilized hypothetical stand characteristics to examine lidar profiles. In essence, this is a simple method to further enhance shape characteristics from the lidar profile. In this paper we report the results comparing field data collected at La Selva, Costa Rica (10° 26′ N, 83° 59′ W) and forest structure and parameters calculated from vegetation height profiles and forest structural modeling. We developed multiple regression models for each measured forest biometric property using forward stepwise variable selection that used Bayesian information criteria (BIC) as selection criteria. Among measures of forest structure, ranging from tree lateral density, diameter at breast height, and crown geometry, we found strong relationships with lidar canopy vegetation profile parameters. Metrics developed from lidar that were indicators of height of canopy were not significant in estimating plot biomass (p-value = 0.31, r2 = 0.17), but parameters from our synthetic forest model were found to be significant for estimating many of the forest structural properties, such as mean trunk diameter (p-value = 0.004, r2 = 0.51) and tree density (p-value = 0.002, r2 = 0.43). We were also able to develop a significant model relating lidar profiles to basal area (p-value = 0.003, r2 = 0.43). Use of the full lidar profile provided additional avenues for the prediction of field based forest measure parameters. Our synthetic canopy model provides a novel method for examining lidar metrics by developing a look-up table of profiles that determine profile shape, depth, and height. We suggest that the use of metrics indicating canopy height derived from lidar are limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties

    Intermanifold similarities in partial photoionization cross sections of helium

    Get PDF
    Using the eigenchannel R-matrix method we calculate partial photoionization cross sections from the ground state of the helium atom for incident photon energies up to the N=9 manifold. The wide energy range covered by our calculations permits a thorough investigation of general patterns in the cross sections which were first discussed by Menzel and co-workers [Phys. Rev. A {\bf 54}, 2080 (1996)]. The existence of these patterns can easily be understood in terms of propensity rules for autoionization. As the photon energy is increased the regular patterns are locally interrupted by perturber states until they fade out indicating the progressive break-down of the propensity rules and the underlying approximate quantum numbers. We demonstrate that the destructive influence of isolated perturbers can be compensated with an energy-dependent quantum defect.Comment: 10 pages, 10 figures, replacement with some typos correcte

    Smooth Muscle Stiffness Sensitivity is Driven by Soluble and Insoluble ECM Chemistry

    Get PDF
    Smooth muscle cell (SMC) invasion into plaques and subsequent proliferation is a major factor in the progression of atherosclerosis. During disease progression, SMCs experience major changes in their microenvironment, such as what integrin-binding sites are exposed, the portfolio of soluble factors available, and the elasticity and modulus of the surrounding vessel wall. We have developed a hydrogel biomaterial platform to examine the combined effect of these changes on SMC phenotype. We were particularly interested in how the chemical microenvironment affected the ability of SMCs to sense and respond to modulus. To our surprise, we observed that integrin binding and soluble factors are major drivers of several critical SMC behaviors, such as motility, proliferation, invasion, and differentiation marker expres- sion, and these factors modulated the effect of stiffness on proliferation and migration. Overall, modulus only modestly affected behaviors other than proliferation, relative to integrin binding and soluble factors. Surprisingly, patho- logical behaviors (proliferation, motility) are not inversely related to SMC marker expression, in direct conflict with previous studies on substrates coupled with single extracel- lular matrix (ECM) proteins. A high-throughput bead-based ELISA approach and inhibitor studies revealed that differ- entiation marker expression is mediated chiefly via focal adhesion kinase (FAK) signaling, and we propose that integrin binding and FAK drive the transition from a migratory to a proliferative phenotype. We emphasize the importance of increasing the complexity of in vitro testing platforms to capture these subtleties in cell phenotypes and signaling, in order to better recapitulate important features of in vivo disease and elucidate potential context-dependent therapeutic targets

    Cancer mortality in IBM Endicott plant workers, 1969–2001: an update on a NY production plant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In response to concerns expressed by workers at a public meeting, we analyzed the mortality experience of workers who were employed at the IBM plant in Endicott, New York and died between 1969–2001. An epidemiologic feasibility assessment indicated potential worker exposure to several known and suspected carcinogens at this plant.</p> <p>Methods</p> <p>We used the mortality and work history files produced under a court order and used in a previous mortality analysis. Using publicly available data for the state of New York as a standard of comparison, we conducted proportional cancer mortality (PCMR) analysis.</p> <p>Results</p> <p>The results showed significantly increased mortality due to melanoma (PCMR = 367; 95% CI: 119, 856) and lymphoma (PCMR = 220; 95% CI: 101, 419) in males and modestly increased mortality due to kidney cancer (PCMR = 165; 95% CI: 45, 421) and brain cancer (PCMR = 190; 95% CI: 52, 485) in males and breast cancer (PCMR = 126; 95% CI: 34, 321) in females.</p> <p>Conclusion</p> <p>These results are similar to results from a previous IBM mortality study and support the need for a full cohort mortality analysis such as the one being planned by the National Institute for Occupational Safety and Health.</p

    The Hidden Costs of Land Degradation in US Maize Agriculture

    Get PDF
    The United States is a world leader in the production of maize and other crops and the agricultural success of the country is directly linked to the intensive use of fertilizers and irrigation. However, even in advanced agricultural systems, soils can become degraded over time due to factors such as soil organic matter (SOM) loss and erosion. Here, we use a series of scenario-based model analyses to show that about one-third of current annual US. N fertilizer use in maize agriculture is used to compensate for the long-term loss of soil fertility through erosion and organic matter loss. This leads to over a half billion dollars per year in extra fertilizer supply costs to US farmers. These results highlight the potential to reduce both the input costs and environmental impacts of agriculture through the restoration of SOM in agricultural soils
    • …
    corecore