1,205 research outputs found

    Pyramidal Atoms: Berylliumlike Hollow States

    Full text link
    Based on the idea that four excited electrons arrange themselves around the nucleus in the corners of a pyramid in order to minimize their mutual repulsion, we present an analytical model of quadruply excited states. The model shows excellent comparison with ab initio results and provides a clear physical picture of the intrinsic motion of the four electrons. The model is used to predict configuration-mixing fractions and spectra of these highly correlated states.Comment: 4 pages, 2 figure

    The classical dynamics of two-electron atoms near the triple collision

    Full text link
    The classical dynamics of two electrons in the Coulomb potential of an attractive nucleus is chaotic in large parts of the high-dimensional phase space. Quantum spectra of two-electron atoms, however, exhibit structures which clearly hint at the existence of approximate symmetries in this system. In a recent paper,(Phys. Rev. Lett. 93, 054302 (2004)), we presented a study of the dynamics near the triple collision as a first step towards uncovering the hidden regularity in the classical dynamics of two electron atoms. The non-regularisable triple collision singularity is a main source of chaos in three body Coulomb problems. Here, we will give a more detailed account of our findings based on a study of the global structure of the stable and unstable manifolds of the triple collision.Comment: 21 pages, 17 figure

    Intermanifold similarities in partial photoionization cross sections of helium

    Get PDF
    Using the eigenchannel R-matrix method we calculate partial photoionization cross sections from the ground state of the helium atom for incident photon energies up to the N=9 manifold. The wide energy range covered by our calculations permits a thorough investigation of general patterns in the cross sections which were first discussed by Menzel and co-workers [Phys. Rev. A {\bf 54}, 2080 (1996)]. The existence of these patterns can easily be understood in terms of propensity rules for autoionization. As the photon energy is increased the regular patterns are locally interrupted by perturber states until they fade out indicating the progressive break-down of the propensity rules and the underlying approximate quantum numbers. We demonstrate that the destructive influence of isolated perturbers can be compensated with an energy-dependent quantum defect.Comment: 10 pages, 10 figures, replacement with some typos correcte

    Association of expired nitric oxide with occupational particulate exposure.

    Get PDF
    Particulate air pollution has been associated with adverse respiratory health effects. This study assessed the utility of expired nitric oxide to detect acute airway responses to metal-containing fine particulates. Using a repeated-measures study design, we investigated the association between the fractional concentration of expired nitric oxide (F(E)NO) and exposure to particulate matter with an aerodynamic mass median diameter of less than or equal to 2.5 micro m (PM(2.5)) in boilermakers exposed to residual oil fly ash and metal fumes. Subjects were monitored for 5 days during boiler repair overhauls in 1999 (n = 20) or 2000 (n = 14). The Wilcoxon median baseline F(E)NO was 10.6 ppb [95% confidence interval (CI): 9.1, 12.7] in 1999 and 7.4 ppb (95% CI: 6.7, 8.0) in 2000. The Wilcoxon median PM(2.5) 8-hr time-weighted average was 0.56 mg/m(3) (95% CI: 0.37, 0.93) in 1999 and 0.86 mg/m(3) (95% CI: 0.65, 1.07) in 2000. F(E)NO levels during the work week were significantly lower than baseline F(E)NO in 1999 (p < 0.001). A significant inverse exposure-response relationship between log-transformed F(E)NO and the previous workday's PM(2.5) concentration was found in 1999, after adjusting for smoking status, age, and sampling year. With each 1 mg/m(3) incremental increase in PM(2.5) exposure, log F(E)NO decreased by 0.24 (95% CI: -0.38, -0.10) in 1999. The lack of an exposure-response relationship between PM(2.5) exposure and F(E)NO in 2000 could be attributable to exposure misclassification resulting from the use of respirators. In conclusion, occupational exposure to metal-containing fine particulates was associated with significant decreases in F(E)NO in a survey of workers with limited respirator usage

    Association of Expired Nitric Oxide with Occupational Particulate Exposure

    Get PDF
    Particulate air pollution has been associated with adverse respiratory health effects. This study assessed the utility of expired nitric oxide to detect acute airway responses to metal-containing fine particulates. Using a repeated-measures study design, we investigated the association between the fractional concentration of expired nitric oxide (FE_ENO) and exposure to particulate matter with an aerodynamic mass median diameter of less than or equal to 2.5 micro m (PM2.5_{2.5}) in boilermakers exposed to residual oil fly ash and metal fumes. Subjects were monitored for 5 days during boiler repair overhauls in 1999 (n = 20) or 2000 (n = 14). The Wilcoxon median baseline FE_ENO was 10.6 ppb [95% confidence interval (CI): 9.1, 12.7] in 1999 and 7.4 ppb (95% CI: 6.7, 8.0) in 2000. The Wilcoxon median PM2.5_{2.5} 8-hr time-weighted average was 0.56 mg/m(3) (95% CI: 0.37, 0.93) in 1999 and 0.86 mg/m(3) (95% CI: 0.65, 1.07) in 2000. FE_ENO levels during the work week were significantly lower than baseline FE_ENO in 1999 (p < 0.001). A significant inverse exposure-response relationship between log-transformed FE_ENO and the previous workday's PM2.5_{2.5} concentration was found in 1999, after adjusting for smoking status, age, and sampling year. With each 1 mg/m3^3 incremental increase in PM2.5_{2.5} exposure, log FE_ENO decreased by 0.24 (95% CI: -0.38, -0.10) in 1999. The lack of an exposure-response relationship between PM2.5_{2.5} exposure and FE_ENO in 2000 could be attributable to exposure misclassification resulting from the use of respirators. In conclusion, occupational exposure to metal-containing fine particulates was associated with significant decreases in FE_ENO in a survey of workers with limited respirator usage

    The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay.

    Get PDF
    Phthalates are industrial chemicals widely used in many commercial applications. The general population is exposed to phthalates through consumer products as well as through diet and medical treatments. To determine whether environmental levels of phthalates are associated with altered DNA integrity in human sperm, we selected a population without identified sources of exposure to phthalates. One hundred sixty-eight subjects recruited from the Massachusetts General Hospital Andrology Laboratory provided a semen and a urine sample. Eight phthalate metabolites were measured in urine by using high-performance liquid chromatography and tandem mass spectrometry; data were corrected for urine dilution by adjusting for specific gravity. The neutral single-cell microgel electrophoresis assay (comet assay) was used to measure DNA integrity in sperm. VisComet image analysis software was used to measure comet extent, a measure of total comet length (micrometers); percent DNA in tail (tail%), a measure of the proportion of total DNA present in the comet tail; and tail distributed moment (TDM), an integrated measure of length and intensity (micrometers). For an interquartile range increase in specific gravity-adjusted monoethyl phthalate (MEP) level, the comet extent increased significantly by 3.6 micro m [95% confidence interval (95% CI), 0.74-6.47]; the TDM also increased 1.2 micro m (95% CI, -0.05 to 2.38) but was of borderline significance. Monobutyl, monobenzyl, monomethyl, and mono-2-ethylhexyl phthalates were not significantly associated with comet assay parameters. In conclusion, this study represents the first human data to demonstrate that urinary MEP, at environmental levels, is associated with increased DNA damage in sperm
    corecore