768 research outputs found

    Levy model of cancer

    Full text link
    A small portion of a tissue defines a microstate in gene expression space. Mutations, epigenetic events or external factors cause microstate displacements which are modeled by combining small independent gene expression variations and large Levy jumps, resulting from the collective variations of a set of genes. The risk of cancer in a tissue is estimated as the microstate probability to transit from the normal to the tumor region in gene expression space. The formula coming from the contribution of large Levy jumps seems to provide a qualitatively correct description of the lifetime risk of cancer, and reveals an interesting connection between the risk and the way the tissue is protected against infections.Comment: arXiv admin note: text overlap with arXiv:1507.0692

    The silicate absorption profile in the ISM towards the heavily obscured nucleus of NGC 4418

    Get PDF
    The 9.7-micron silicate absorption profile in the interstellar medium provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse interstellar medium is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to that in the diffuse ISM in the Milky Way with no evidence of spectral structure from crystalline silicates or silicon carbide grains.Comment: 7 Pages, 3 figures. MNRAS in pres

    Spatially Resolved [FeII] 1.64 \mu m Emission in NGC 5135. Clues for Understanding the Origin of the Hard X-rays in Luminous Infrared Galaxies

    Get PDF
    Spatially resolved near-IR and X-ray imaging of the central region of the Luminous Infrared Galaxy NGC 5135 is presented. The kinematical signatures of strong outflows are detected in the [FeII]1.64 \mu m emission line in a compact region at 0.9 kpc from the nucleus. The derived mechanical energy release is consistent with a supernova rate of 0.05-0.1 yr1^{-1}. The apex of the outflowing gas spatially coincides with the strongest [FeII] emission peak and with the dominant component of the extranuclear hard X-ray emission. All these features provide evidence for a plausible direct physical link between supernova-driven outflows and the hard X-ray emitting gas in a LIRG. This result is consistent with model predictions of starbursts concentrated in small volumes and with high thermalization efficiencies. A single high-mass X-ray binary (HMXB) as the major source of the hard X-ray emission although not favoured, cannot be ruled out. Outside the AGN, the hard X-ray emission in NGC 5135 appears to be dominated by the hot ISM produced by supernova explosions in a compact star-forming region, and not by the emission due to HMXB. If this scenario is common to U/LIRGs, the hard X-rays would only trace the most compact (< 100 pc) regions with high supernova and star formation densities, therefore a lower limit to their integrated star formation. The SFR derived in NGC 5135 based on its hard X-ray luminosity is a factor of two and four lower than the values obtained from the 24 \mu m and soft X-ray luminosities, respectively.Comment: Accepted for Publication in ApJ, 18 pages, 2 figure

    Synthetic spectra of H Balmer and HeI absorption lines. I: Stellar library

    Full text link
    We present a grid of synthetic profiles of stellar H Balmer and HeI lines at optical wavelengths with a sampling of 0.3 A. The grid spans a range of effective temperature 4000 K < Teff < 50000 K, and gravity 0.0 < log g < 5.0 at solar metallicity. For Teff > 25000 K, NLTE stellar atmosphere models are computed using the code TLUSTY (Hubeny 1988). For cooler stars, Kurucz (1993) LTE models are used to compute thesynthetic spectra. The grid includes the profiles of the high-order hydrogen Balmer series and HeI lines for effective temperatures and gravities that have not been previously synthesized. The behavior of H8 to H13 and HeI 3819 with effective temperature and gravity is very similar to that of the lower terms of the series (e.g. Hb) and the other HeI lines at longer wavelengths; therefore, they are suited for the determination of the atmospheric parameters of stars. These lines are potentially important to make predictions for these stellar absorption features in galaxies with active star formation. Evolutionary synthesis models of these lines for starburst and post-starburst galaxies are presented in a companion paper. The full set of the synthetic stellar spectra is available for retrieval at our website http://www.iaa.es/ae/e2.html and http://www.stsci.edu/science/starburst/ or on request from the authors at [email protected]: To be published in ApJS. 28 pages and 12 figure

    The Multitude of Unresolved Continuum Sources at 1.6 microns in Hubble Space Telescope images of Seyfert Galaxies

    Get PDF
    We examine 112 Seyfert galaxies observed by the Hubble Space Telescope (HST) at 1.6 microns. We find that ~50% of the Seyfert 2.0 galaxies which are part of the Revised Shapeley-Ames (RSA) Catalog or the CfA redshift sample contain unresolved continuum sources at 1.6 microns. All but a couple of the Seyfert 1.0-1.9 galaxies display unresolved continuum sources. The unresolved sources have fluxes of order a mJy, near-infrared luminosities of order 10^41 erg/s and absolute magnitudes M_H ~-16. Comparison non-Seyfert galaxies from the RSA Catalog display significantly fewer (~20%), somewhat lower luminosity nuclear sources, which could be due to compact star clusters. We find that the luminosities of the unresolved Seyfert 1.0-1.9 sources at 1.6 microns are correlated with [OIII] 5007A and hard X-ray luminosities, implying that these sources are non-stellar. Assuming a spectral energy distribution similar to that of a Seyfert 2 galaxy, we estimate that a few percent of local spiral galaxies contain black holes emitting as Seyferts at a moderate fraction, 10^-1 to 10^-4, of their Eddington luminosities. With increasing Seyfert type the fraction of unresolved sources detected at 1.6 microns and the ratio of 1.6 microns to [OIII] fluxes tend to decrease. These trends are consistent with the unification model for Seyfert 1 and 2 galaxies.Comment: accepted by Ap

    Techno-economic feasibility of photovoltaic solar electrodialysis with bipolar membranes

    Get PDF
    Electrodialysis with bipolar membranes (EDBM) can transform concentrated brines into acids and bases through the application of an electric field. Nevertheless, the widespread use of EDBM is limited by its high energy consumption, typically based on fossil fuels. Yet, the integration of EDBM with renewable energy sources, like solar photovoltaic (PV), remains unexplored. This study presents a techno-economic analysis of PV-EDBM to produce NaOH and HCl from seawater reverse osmosis (SWRO) brines. An integrated PV-EDBM model was developed and applied to a hypothetical PV-EDBM plant located in the SWRO facility of Lampedusa (Italy). Results revealed that PV has no negative impact on the performance in terms of product concentration, specific energy consumption and current efficiency. Meanwhile, the levelized cost of NaOH for PV-EDBM was reduced by 20 % in comparison to the electrical grid mix, achieving 210 €·ton−1 NaOH on an annual average for PV-EDBM. Therefore, the investment associated with PV is offset by the benefits of reduced electricity costs from the grid. Consequently, EDBM emerges as a feasible solution to address resource scarcity, representing a significant step towards integrating renewable energies with advanced wastewater treatment technologies, thus paving the path to a greener future

    The Variability of Seyfert 1.8 and 1.9 Galaxies at 1.6 microns

    Get PDF
    We present a study of Seyfert 1.5-2.0 galaxies observed at two epochs with the Hubble Space Telescope (HST) at 1.6 microns. We find that unresolved nuclear emission from 9 of 14 nuclei varies at the level of 10-40% on timescales of 0.7-14 months, depending upon the galaxy. A control sample of Seyfert galaxies lacking unresolved sources and galaxies lacking Seyfert nuclei show less than 3% instrumental variation in equivalent aperture measurements. This proves that the unresolved sources are non-stellar and associated with the central pc of active galactic nuclei. Unresolved sources in Seyfert 1.8 and 1.9 galaxies are not usually detected in HST optical surveys, however high angular resolution infrared observations will provide a way to measure time delays in these galaxies.Comment: accepted by ApJLetters (emulateapj latex

    Upholding the unified model for Active Galactic Nuclei: VLT/FORS2 spectropolarimetry of Seyfert 2 galaxies

    Get PDF
    The origin of the unification model for Active Galactic Nuclei (AGN) was the detection of broad hydrogen recombination lines in the optical polarized spectrum of the Seyfert 2 galaxy (Sy2) NGC 1068. Since then, a search for the hidden broad-line region (HBLR) of nearby Sy2s started, but polarized broad lines have only been detected in ?30–40% of the nearby Sy2s observed to date. Here we present new VLT/FORS2 optical spectropolarimetry of a sample of 15 Sy2s, including Compton-thin and Compton-thick sources. The sample includes six galaxies without previously published spectropolarimetry, some of them normally treated as non-hidden BLR (NHBLR) objects in the literature, four classified as NHBLR, and five as HBLR based on previous data. We report ?4? detections of a HBLR in 11 of these galaxies (73% of the sample) and a tentative detection in NGC 5793, which is Compton-thick according to the analysis of X-ray data performed here. Our results confirm that at least some NHBLRs are misclassified, bringing previous publications reporting differences between HBLR and NHBLR objects into question. We detect broad H? and H? components in polarized light for 10 targets, and just broad H? for NGC 5793 and NGC 6300, with line widths ranging between 2100 and 9600 km s?1. High bolometric luminosities and low column densities are associated with higher polarization degrees, but not necessarily with the detection of the scattered broad components
    corecore