10 research outputs found
Inducible Slc7a7 Knockout Mouse Model Recapitulates Lysinuric Protein Intolerance Disease
Lysinuric protein intolerance (LPI) is a rare autosomal disease caused by defective cationic amino acid (CAA) transport due to mutations in SLC7A7, which encodes for the y+LAT1 transporter. LPI patients suffer from a wide variety of symptoms, which range from failure to thrive, hyperammonemia, and nephropathy to pulmonar alveolar proteinosis (PAP), a potentially life-threatening complication. Hyperammonemia is currently prevented by citrulline supplementation. However, the full impact of this treatment is not completely understood. In contrast, there is no defined therapy for the multiple reported complications of LPI, including PAP, for which bronchoalveolar lavages do not prevent progression of the disease. The lack of a viable LPI model prompted us to generate a tamoxifen-inducible Slc7a7 knockout mouse (Slc7a7-/-). The Slc7a7-/- model resembles the human LPI phenotype, including malabsorption and impaired reabsorption of CAA, hypoargininemia and hyperammonemia. Interestingly, the Slc7a7-/- mice also develops PAP and neurological impairment. We observed that citrulline treatment improves the metabolic derangement and survival. On the basis of our findings, the Slc7a7-/- model emerges as a promising tool to further study the complexity of LPI, including its immune-like complications, and to design evidence-based therapies to halt its progression
Cerebrospinal fluid neopterin analysis in neuropediatric patients: establishment of a new cut off-value for the identification of inflammatory-immune mediated processes
OBJECTIVE: A high level of cerebrospinal fluid (CSF) neopterin is a marker of central nervous system inflammatory-immune mediated processes. We aimed to assess data from 606 neuropediatric patients, describing the clinical and biochemical features of those neurological disorders presenting CSF neopterin values above a new cut-off value that was defined in our laboratory. METHODS: To establish the new CSF neopterin cut-off value, we studied two groups of patients: Group 1 comprised 68 patients with meningoencephalitis, and Group 2 comprised 52 children with a confirmed peripheral infection and no central nervous system involvement. We studied 606 CSF samples from neuropediatric patients who were classified into 3 groups: genetic diagnosis (A), acquired/unknown etiologic neurologic diseases (B) and inflammatory-immune mediated processes (C). RESULTS: The CSF neopterin cut-off value was 61 nmol/L. Out of 606 cases, 56 presented a CSF neopterin level above this value. Group C had significantly higher CSF neopterin, protein and leukocyte values than the other groups. Sixteen of twenty-three patients in this group had a CSF neopterin level above the cut-off, whereas three and seven patients presented increased leukocyte and protein values, respectively. A significant association was found among CSF neopterin, proteins and leukocytes in the 606 patients. White matter disturbances were associated with high CSF neopterin concentrations. CONCLUSIONS: Although children with inflammatory-immune mediated processes presented higher CSF neopterin values, patients with other neurological disorders also showed increased CSF neopterin concentrations. These results stress the importance of CSF neopterin analysis for the identification of inflammatory-immune mediated processes
Targeted next generation sequencing in patients with inborn errors of metabolism
BACKGROUND: Next-generation sequencing (NGS) technology has allowed the promotion of genetic diagnosis and are becoming increasingly inexpensive and faster. To evaluate the utility of NGS in the clinical field, a targeted genetic panel approach was designed for the diagnosis of a set of inborn errors of metabolism (IEM). The final aim of the study was to compare the findings for the diagnostic yield of NGS in patients who presented with consistent clinical and biochemical suspicion of IEM with those obtained for patients who did not have specific biomarkers. METHODS: The subjects studied (n = 146) were classified into two categories: Group 1 (n = 81), which consisted of patients with clinical and biochemical suspicion of IEM, and Group 2 (n = 65), which consisted of IEM cases with clinical suspicion and unspecific biomarkers. A total of 171 genes were analyzed using a custom targeted panel of genes followed by Sanger validation. RESULTS: Genetic diagnosis was achieved in 50% of patients (73/146). In addition, the diagnostic yield obtained for Group 1 was 78% (63/81), and this rate decreased to 15.4% (10/65) in Group 2 (X2 = 76.171; p < 0.0001). CONCLUSIONS: A rapid and effective genetic diagnosis was achieved in our cohort, particularly the group that had both clinical and biochemical indications for the diagnosis
Discovery of biomarker panels for neural dysfunction in inborn errors of amino acid metabolism.
Patients with inborn errors of amino acid metabolism frequently show neuropsychiatric symptoms despite accurate metabolic control. This study aimed to gain insight into the underlying mechanisms of neural dysfunction. Here we analyzed the expression of brain-derived neurotrophic factor (BDNF) and 10 genes required for correct brain functioning in plasma and blood of patients with Urea Cycle Disorders (UCD), Maple Syrup Urine Disease (MSUD) and controls. Receiver-operating characteristic (ROC) analysis was used to evaluate sensitivity and specificity of potential biomarkers. CACNA2D2 (α2δ2 subunit of voltage-gated calcium channels) and MECP2 (methyl-CpG binding protein 2) mRNA and protein showed an excellent neural function biomarker signature (AUC ≥ 0,925) for recognition of MSUD. THBS3 (thrombospondin 3) mRNA and AABA gave a very good biomarker signature (AUC 0,911) for executive-attention deficits. THBS3, LIN28A mRNA, and alanine showed a perfect biomarker signature (AUC 1) for behavioral and mood disorders. Finally, a panel of BDNF protein and at least two large neural AAs showed a perfect biomarker signature (AUC 1) for recognition of psychomotor delay, pointing to excessive protein restriction as central causative of psychomotor delay. To conclude, our study has identified promising biomarker panels for neural function evaluation, providing a base for future studies with larger samples
Disrupted mitochondrial and metabolic plasticity underlie comorbidity between age-Related and degenerative disorders as parkinson disease and type 2 diabetes mellitus.
Idiopathic Parkinson's disease (iPD) and type 2 diabetes mellitus (T2DM) are chronic, multisystemic, and degenerative diseases associated with aging, with eventual epidemiological co-morbidity and overlap in molecular basis. This study aims to explore if metabolic and mitochondrial alterations underlie the previously reported epidemiologic and clinical co-morbidity from a molecular level. To evaluate the adaptation of iPD to a simulated pre-diabetogenic state, we exposed primary cultured fibroblasts from iPD patients and controls to standard (5 mM) and high (25 mM) glucose concentrations to further characterize metabolic and mitochondrial resilience. iPD fibroblasts showed increased organic and amino acid levels related to mitochondrial metabolism with respect to controls, and these differences were enhanced in high glucose conditions (citric, suberic, and sebacic acids levels increased, as well as alanine, glutamate, aspartate, arginine, and ornithine amino acids; p-values between 0.001 and 0.05). The accumulation of metabolites in iPD fibroblasts was associated with (and probably due to) the concomitant mitochondrial dysfunction observed at enzymatic, oxidative, respiratory, and morphologic level. Metabolic and mitochondrial plasticity of controls was not observed in iPD fibroblasts, which were unable to adapt to different glucose conditions. Impaired metabolism and mitochondrial activity in iPD may limit energy supply for cell survival. Moreover, reduced capacity to adapt to disrupted glucose balance characteristic of T2DM may underlay the co-morbidity between both diseases. Conclusions: Fibroblasts from iPD patients showed mitochondrial impairment, resulting in the accumulation of organic and amino acids related to mitochondrial metabolism, especially when exposed to high glucose. Mitochondrial and metabolic defects down warding cell plasticity to adapt to changing glucose bioavailability may explain the comorbidity between iPD and T2DM
Kynurenine pathway in post-mortem prefrontal cortex and cerebellum in schizophrenia: relationship with monoamines and symptomatology
Background: The cortico-cerebellar-thalamic-cortical circuit has been implicated in the emergence of psychotic symptoms in schizophrenia (SZ). The kynurenine pathway (KP) has been linked to alterations in glutamatergic and monoaminergic neurotransmission and to SZ symptomatology through the production of the metabolites quinolinic acid (QA) and kynurenic acid (KYNA). Methods: This work describes alterations in KP in the post-mortem prefrontal cortex (PFC) and cerebellum (CB) of 15 chronic SZ patients and 14 control subjects in PFC and 13 control subjects in CB using immunoblot for protein levels and ELISA for interleukins and QA and KYNA determinations. Monoamine metabolites were analysed by high-performance liquid chromatography and SZ symptomatology was assessed by Positive and Negative Syndrome Scale (PANSS). The association of KP with inflammatory mediators, monoamine metabolism and SZ symptomatology was explored. Results: In the PFC, the presence of the anti-inflammatory cytokine IL-10 together with IDO2 and KATII enzymes decreased in SZ, while TDO and KMO enzyme expression increased. A network interaction analysis showed that in the PFC IL-10 was coupled to the QA branch of the kynurenine pathway (TDO-KMO-QA), whereas IL-10 associated with KMO in CB. KYNA in the CB inversely correlated with negative and general PANSS psychopathology. Although there were no changes in monoamine metabolite content in the PFC in SZ, a network interaction analysis showed associations between dopamine and methoxyhydroxyphenylglycol degradation metabolite. Direct correlations were found between general PANSS psychopathology and the serotonin degradation metabolite, 5-hydroxyindoleacetic acid. Interestingly, KYNA in the CB inversely correlated with 5-hydroxyindoleacetic acid in the PFC. Conclusions: Thus, this work found alterations in KP in two brain areas belonging to the cortico-cerebellar-thalamic-cortical circuit associated with SZ symptomatology, with a possible impact across areas in 5-HT degradation
Cerebrospinal fluid neopterin analysis in neuropediatric patients: establishment of a new cut off-value for the identification of inflammatory-immune mediated processes
OBJECTIVE: A high level of cerebrospinal fluid (CSF) neopterin is a marker of central nervous system inflammatory-immune mediated processes. We aimed to assess data from 606 neuropediatric patients, describing the clinical and biochemical features of those neurological disorders presenting CSF neopterin values above a new cut-off value that was defined in our laboratory. METHODS: To establish the new CSF neopterin cut-off value, we studied two groups of patients: Group 1 comprised 68 patients with meningoencephalitis, and Group 2 comprised 52 children with a confirmed peripheral infection and no central nervous system involvement. We studied 606 CSF samples from neuropediatric patients who were classified into 3 groups: genetic diagnosis (A), acquired/unknown etiologic neurologic diseases (B) and inflammatory-immune mediated processes (C). RESULTS: The CSF neopterin cut-off value was 61 nmol/L. Out of 606 cases, 56 presented a CSF neopterin level above this value. Group C had significantly higher CSF neopterin, protein and leukocyte values than the other groups. Sixteen of twenty-three patients in this group had a CSF neopterin level above the cut-off, whereas three and seven patients presented increased leukocyte and protein values, respectively. A significant association was found among CSF neopterin, proteins and leukocytes in the 606 patients. White matter disturbances were associated with high CSF neopterin concentrations. CONCLUSIONS: Although children with inflammatory-immune mediated processes presented higher CSF neopterin values, patients with other neurological disorders also showed increased CSF neopterin concentrations. These results stress the importance of CSF neopterin analysis for the identification of inflammatory-immune mediated processes
Targeted next generation sequencing in patients with inborn errors of metabolism
BACKGROUND: Next-generation sequencing (NGS) technology has allowed the promotion of genetic diagnosis and are becoming increasingly inexpensive and faster. To evaluate the utility of NGS in the clinical field, a targeted genetic panel approach was designed for the diagnosis of a set of inborn errors of metabolism (IEM). The final aim of the study was to compare the findings for the diagnostic yield of NGS in patients who presented with consistent clinical and biochemical suspicion of IEM with those obtained for patients who did not have specific biomarkers. METHODS: The subjects studied (n = 146) were classified into two categories: Group 1 (n = 81), which consisted of patients with clinical and biochemical suspicion of IEM, and Group 2 (n = 65), which consisted of IEM cases with clinical suspicion and unspecific biomarkers. A total of 171 genes were analyzed using a custom targeted panel of genes followed by Sanger validation. RESULTS: Genetic diagnosis was achieved in 50% of patients (73/146). In addition, the diagnostic yield obtained for Group 1 was 78% (63/81), and this rate decreased to 15.4% (10/65) in Group 2 (X2 = 76.171; p < 0.0001). CONCLUSIONS: A rapid and effective genetic diagnosis was achieved in our cohort, particularly the group that had both clinical and biochemical indications for the diagnosis
Review and evaluation of the methodological quality of the existing guidelines and recommendations for inherited neurometabolic disorders
BACKGROUND:
Inherited neurometabolic disorders (iNMDs) represent a group of almost seven hundred rare diseases whose common manifestations are clinical neurologic or cognitive symptoms that can appear at any time, in the first months/years of age or even later in adulthood. Early diagnosis and timely treatments are often pivotal for the favorable course of the disease. Thus, the elaboration of new evidence-based recommendations for iNMD diagnosis and management is increasingly requested by health care professionals and patients, even though the methodological quality of existing guidelines is largely unclear. InNerMeD-I-Network is the first European network on iNMDs that was created with the aim of sharing and increasing validated information about diagnosis and management of neurometabolic disorders. One of the goals of the project was to determine the number and the methodological quality of existing guidelines and recommendations for iNMDs. ----- METHODS:
We performed a systematic search on PubMed, the National Guideline Clearinghouse (NGC), the Guidelines International Network (G-I-N), the Scottish Intercollegiate Guideline Network (SIGN) and the National Institute for Health and Care Excellence (NICE) to identify all the published guidelines and recommendations for iNMDs from January 2000 to June 2015. The methodological quality of the selected documents was determined using the AGREE II instrument, an appraisal tool composed of 6 domains covering 23 key items. ----- RESULTS:
A total of 55 records met the inclusion criteria, 11 % were about groups of disorders, whereas the majority encompassed only one disorder. Lysosomal disorders, and in particular Fabry, Gaucher disease and mucopolysaccharidoses where the most studied. The overall methodological quality of the recommendation was acceptable and increased over time, with 25 % of the identified guidelines strongly recommended by the appraisers, 64 % recommended, and 11 % not recommended. However, heterogeneity in the obtained scores for each domain was observed among documents covering different groups of disorders and some domains like 'stakeholder involvement' and 'applicability' were generally scarcely addressed. ----- CONCLUSIONS:
Greater efforts should be devoted to improve the methodological quality of guidelines and recommendations for iNMDs and AGREE II instrument seems advisable for new guideline development. The elaboration of new guidelines encompassing still uncovered disorders is badly needed
Cerebrospinal fluid neopterin as a biomarker of neuroinflammatory diseases.
The elevation of neopterin in cerebrospinal fuid (CSF) has been reported in several neuroinfammatory disorders. However, it is not expected that neopterin alone can discriminate among diferent neuroinfammatory etiologies. We conducted an observational retrospective and case-control study to analyze the CSF biomarkers neopterin, total proteins, and leukocytes in a large cohort of pediatric patients with neuroinfammatory disorders. CSF samples from 277 subjects were included and classifed into four groups: Viral meningoencephalitis, bacterial meningitis, acquired immunemediated disorders, and patients with no-immune diseases (control group). CSF neopterin was analyzed with high-performance liquid chromatography. Microbiological diagnosis included bacterial CSF cultures and several specifc real-time polymerase chain reactions. Molecular testing for multiple respiratory pathogens was also included. Antibodies against neuronal and glial proteins were tested. Canonical discriminant analysis of the three biomarkers was conducted to establish the best discriminant functions for the classifcation of the diferent clinical groups. Model validation was done by biomarker analyses in a new cohort of 95 pediatric patients. CSF neopterin displayed the highest values in the viral and bacterial infection groups. By applying canonical discriminant analysis, it was possible to classify the patients into the diferent groups. Validation analyses displayed good results for neuropediatric patients with no-immune diseases and for viral meningitis patients, followed by the other groups. This study provides initial evidence of a more efcient approach to promote the timely classifcation of patients with viral and bacterial infections and acquired autoimmune disorders. Through canonical equations, we have validated a new tool that aids in the early and diferential diagnosis of these neuroinfammatory conditions