43 research outputs found

    A unified model for the molecular basis of Xeroderma pigmentosum-Cockayne Syndrome

    Get PDF
    Nucleotide Excision Repair (NER) is a pathway that removes lesions distorting the DNA helix. The molecular basis of the rare diseases Xeroderma pigmentosum (XP) and Cockayne Syndrome (CS) are explained based on the defects happening in 2 NER branches: Global-Genome Repair and Transcription-Coupled Repair, respectively. Nevertheless, both afflictions sporadically occur together, giving rise to XP/CS; however, the molecular basis of XP/CS is not understood very well. Many efforts have been made to clarify why mutations in only 4 NER genes, namely XPB, XPD, XPF and XPG, are the basis of this disease. Effort has also been made to unravel why mutations within these genes lead to XP, XP/CS, or other pathologies. We have recently contributed to the disclosure of this puzzle by characterizing Rad3/XPD mutations in Saccharomyces cerevisiae and human cells. Based on our, and others', observations, we propose a model compatible with all XP/CS cases and the current bibliography

    The Role of Replication-Associated Repair Factors on R-Loops

    Get PDF
    The nascent RNA can reinvade the DNA double helix to form a structure termed the R-loop, where a single-stranded DNA (ssDNA) is accompanied by a DNA-RNA hybrid. Unresolved R-loops can impede transcription and replication processes and lead to genomic instability by a mechanism still not fully understood. In this sense, a connection between R-loops and certain chromatin markers has been reported that might play a key role in R-loop homeostasis and genome instability. To counteract the potential harmful effect of R-loops, different conserved messenger ribonucleoprotein (mRNP) biogenesis and nuclear export factors prevent R-loop formation, while ubiquitously-expressed specific ribonucleases and DNA-RNA helicases resolve DNA-RNA hybrids. However, the molecular events associated with R-loop sensing and processing are not yet known. Given that R-loops hinder replication progression, it is plausible that some DNA replication-associated factors contribute to dissolve R-loops or prevent R-loop mediated genome instability. In support of this, R-loops accumulate in cells depleted of the BRCA1, BRCA2 or the Fanconi anemia (FA) DNA repair factors, indicating that they play an active role in R-loop dissolution. In light of these results, we review our current view of the role of replication-associated DNA repair pathways in preventing the harmful consequences of R-loops

    The DNA damage response acts as a safeguardagainst harmful DNA–RNA hybrids ofdifferent origins

    Get PDF
    Despite playing physiological roles in specific situations, DNA–RNA hybrids threat genome integrity. To investigate how cells do counteract spontaneous DNA–RNA hybrids, here we screen an siRNA library covering 240 human DNA damage response (DDR) genes and select siRNAs causing DNA–RNA hybrid accumulation and a significant increase in hybrid‐dependent DNA breakage. We identify post‐replicative repair and DNA damage checkpoint factors, including those of the ATM/CHK2 and ATR/CHK1 pathways. Thus, spontaneous DNA–RNA hybrids are likely a major source of replication stress, but they can also accumulate and menace genome integrity as a consequence of unrepaired DSBs and post‐replicative ssDNA gaps in normal cells. We show that DNA–RNA hybrid accumulation correlates with increased DNA damage and chromatin compaction marks. Our results suggest that different mechanisms can lead to DNA–RNA hybrids with distinct consequences for replication and DNA dynamics at each cell cycle stage and support the conclusion that DNA–RNA hybrids are a common source of spontaneous DNA damage that remains unsolved under a deficient DDR.European Research Council (ERC2014AdG669898TARLOOP)Worldwide Cancer Research (WCR15-00098

    Spontaneous DNA-RNA hybrids: differential impacts throughout the cell cycle

    Get PDF
    A large body of research supports that transcription plays a major role among the many sources of replicative stress contributing to genome instability. It is therefore not surprising that the DNA damage response has a role in the prevention of transcription-induced threatening events such as the formation of DNA-RNA hybrids, as we have recently found through an siRNA screening. Three major DDR pathways were defined to participate in the protection against DNA-RNA hybrids: ATM/CHK2, ATR/CHK1 and Postreplication Repair (PRR). Based on these observations, we envision different scenarios of DNA-RNA hybridization and their consequent DNA damage.European Research Council ERC2014 AdG669898 TARLOO

    FANCD2 facilitates replication through common fragile sites

    Get PDF
    Common fragile sites (CFSs) are genomic regions that are unstable under conditions of replicative stress. Although the characteristics of CFSs that render them vulnerable to stress are mainly associated with replication, the cellular pathways that protect CFSs during replication remain unclear. Here, we identify and describe a role for FANCD2 as a trans-acting facilitator of CFS replication, in the absence of exogenous replicative stress. In the absence of FANCD2, replication forks stall within the AT-rich fragility core of CFS leading to dormant origin activation. Furthermore, FANCD2 deficiency is associated with DNA:RNA hybrid formation at CFS-FRA16D and inhibition of DNA:RNA hybrid formation suppresses replication perturbation. In addition, we also found that FANCD2 reduces the number of potential sites of replication initiation. Our data demonstrate that FANCD2 protein is required to ensure efficient CFS replication and provide mechanistic insight into how FANCD2 regulates CFS stability

    The yeast and human FACT chromatin-reorganizing complexes resolve R-loop-mediated transcription-replication conflicts

    Get PDF
    FACT (facilitates chromatin transcription) is a chromatin-reorganizing complex that swaps nucleosomes around the RNA polymerase during transcription elongation and has a role in replication that is not fully understood yet. Here we show that recombination factors are required for the survival of yeast FACT mutants, consistent with an accumulation of DNA breaks that we detected by Rad52 foci and transcription-dependent hyperrecombination. Breaks also accumulate in FACT-depleted human cells, as shown by γH2AX foci and single-cell electrophoresis. Furthermore, FACT-deficient yeast and human cells show replication impairment, which in yeast we demonstrate by ChIP–chip (chromatin immunoprecipitation [ChIP] coupled with microarray analysis) of Rrm3 to occur genome-wide but preferentially at highly transcribed regions. Strikingly, in yeast FACT mutants, high levels of Rad52 foci are suppressed by RNH1 overexpression; R loops accumulate at high levels, and replication becomes normal when global RNA synthesis is inhibited in FACT-depleted human cells. The results demonstrate a key function of FACT in the resolution of R-loop-mediated transcription–replication conflicts, likely associated with a specific chromatin organization

    High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast

    Get PDF
    The Saccharomyces cerevisae RAD3 gene is the homolog of human XPD, an essential gene encoding a DNA helicase of the TFIIH complex involved in both nucleotide excision repair (NER) and transcription. Some mutant alleles of RAD3 (rad3-101 and rad3-102) have partial defects in DNA repair and a strong hyper-recombination (hyper-Rec) phenotype. Previous studies showed that the hyper-Rec phenotype associated with rad3-101 and rad3-102 can be explained as a consequence of persistent single-stranded DNA gaps that are converted to recombinogenic double-strand breaks (DSBs) by replication. The systems previously used to characterize the hyper-Rec phenotype of rad3 strains do not detect the reciprocal products of mitotic recombination. We have further characterized these events using a system in which the reciprocal products of mitotic recombination are recovered. Both rad3-101 and rad3-102 elevate the frequency of reciprocal crossovers about 100-fold. Mapping of these events shows that three-quarters of these crossovers reflect DSBs formed at the same positions in both sister chromatids (double sister-chromatid breaks, DSCBs). The remainder reflects DSBs formed in single chromatids (single chromatid breaks, SCBs). The ratio of DSCBs to SCBs is similar to that observed for spontaneous recombination events in wild-type cells. We mapped 216 unselected genomic alterations throughout the genome including crossovers, gene conversions, deletions, and duplications. We found a significant association between the location of these recombination events and regions with elevated gamma-H2AX. In addition, there was a hotspot for deletions and duplications at the IMA2 and HXT11 genes near the left end of chromosome XV. A comparison of these data with our previous analysis of spontaneous mitotic recombination events suggests that a sub-set of spontaneous events in wild-type cells may be initiated by incomplete NER reactions, and that DSCBs, which cannot be repaired by sister-chromatid recombination, are a major source of mitotic recombination between homologous chromosomes.España, Ministerio de Economía y Competitividad BFU2010-16372España, Ministerio de Economía y Competitividad BFU2013-42918-

    The chromatin network helps prevent cancer-associated mutagenesis at transcription-replication conflicts

    Get PDF
    Genome instability is a feature of cancer cells, transcription being an important source of DNA damage. This is in large part associated with R-loops, which hamper replication, especially at head-on transcription-replication conflicts (TRCs). Here we show that TRCs trigger a DNA Damage Response (DDR) involving the chromatin network to prevent genome instability. Depletion of the key chromatin factors INO80, SMARCA5 and MTA2 results in TRCs, fork stalling and R-loop-mediated DNA damage which mostly accumulates at S/G2, while histone H3 Ser10 phosphorylation, a mark of chromatin compaction, is enriched at TRCs. Strikingly, TRC regions show increased mutagenesis in cancer cells with signatures of homologous recombination deficiency, transcription-coupled nucleotide excision repair (TC-NER) and of the AID/ APOBEC cytidine deaminases, being predominant at head-on collisions. Thus, our results support that the chromatin network prevents R-loops and TRCs from genomic instability and mutagenic signatures frequently associated with cancer.MCIN/AEI/10.13039/501100011033 - I + D + i PID2019-104270GB-I00/BMCConsejo Europeo de Investigación - ERC2014 AdG669898 TARLOO

    The antitumor drugs trabectedin and lurbinectedin induce transcription-dependent replication stress and genome instability

    Get PDF
    R-loops are a major source of replication stress, DNA damage, and genome instability, which are major hallmarks of cancer cells. Accordingly, growing evidence suggests that R-loops may also be related to cancer. Here we show that R-loops play an important role in the cellular response to trabectedin (ET743), an anticancer drug from marine origin and its derivative lurbinectedin (PM01183). Trabectedin and lurbinectedin induced RNA–DNA hybrid-dependent DNA damage in HeLa cells, causing replication impairment and genome instability. We also show that high levels of R-loops increase cell sensitivity to trabectedin. In addition, trabectedin led to transcription-dependent FANCD2 foci accumulation, which was suppressed by RNase H1 overexpression. In yeast, trabectedin and lurbinectedin increased the presence of Rad52 foci, a marker of DNA damage, in an R-loop–dependent manner. In addition to providing new insights into the mechanisms of action of these drugs, our study reveals that R-loops could be targeted by anticancer agents. Given the increasing evidence that R-loops occur all over the genome, the ability of lurbinectedin and trabectedin to act on them may contribute to enhance their efficacy, opening the possibility that R-loops might be a feature shared by specific cancers. Implications: The data presented in this study provide the new concept that R-loops are important cellular factors that contribute to trabectedin and lurbinectedin anticancer activity.European Research Council ERC2014 AdG669898 TARLOOPMinisterio de Economía y Competitividad BFU2016-75058-PPharmaMar PRJ20140221

    The Fanconi Anemia Pathway Protects Genome Integrity from R-loops

    Get PDF
    Co-transcriptional RNA-DNA hybrids (R loops) cause genome instability. To prevent harmful R loop accumulation, cells have evolved specific eukaryotic factors, one being the BRCA2 double-strand break repair protein. As BRCA2 also protects stalled replication forks and is the FANCD1 member of the Fanconi Anemia (FA) pathway, we investigated the FA role in R loop-dependent genome instability. Using human and murine cells defective in FANCD2 or FANCA and primary bone marrow cells from FANCD2 deficient mice, we show that the FA pathway removes R loops, and that many DNA breaks accumulated in FA cells are R loop-dependent. Importantly, FANCD2 foci in untreated and MMC-treated cells are largely R loop dependent, suggesting that the FA functions at R loop-containing sites. We conclude that co-transcriptional R loops and R loop-mediated DNA damage greatly contribute to genome instability and that one major function of the FA pathway is to protect cells from R loops
    corecore