14,682 research outputs found

    String theory extensions of Einstein-Maxwell fields: the static case

    Get PDF
    We present a new approach for generation of solutions in the four-dimensional heterotic string theory with one vector field and in the five-dimensional bosonic string theory starting from the static Einstein-Maxwell fields. Our approach allows one to construct the solution classes invariant with respect to the total subgroup of the three-dimensional charging symmetries of these string theories. The new generation procedure leads to the extremal Israel-Wilson-Perjes subclass of string theory solutions in a special case and provides its natural continuous extension to the realm of non-extremal solutions. We explicitly calculate all string theory solutions related to three-dimensional gravity coupled to an effective dilaton field which arises after an appropriate charging symmetry invariant reduction of the static Einstein-Maxwell system.Comment: 19 pages in late

    Expansionfree Fluid Evolution and Skripkin Model in f(R) Theory

    Full text link
    We consider the modified f(R)f(R) theory of gravity whose higher order curvature terms are interpreted as a gravitational fluid or dark source. The gravitational collapse of a spherically symmetric star, made up of locally anisotropic viscous fluid, is studied under the general influence of the curvature fluid. Dynamical equations and junction conditions are modified in the context of f(R) dark energy and by taking into account the expansionfree evolution of the self-gravitating fluid. As a particular example, the Skripkin model is investigated which corresponds to isotropic pressure with constant energy density. The results are compared with corresponding results in General Relativity.Comment: 18 pages, accepted for publication Int. J. Mod. Phys.

    Charging Interacting Rotating Black Holes in Heterotic String Theory

    Full text link
    We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of General Relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low--energy string theory the double Ernst system can be particularly interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb--Ramond fields. We clarify the rotating character of the BtϕB_{t\phi}--component of the antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low--energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4D effective field theory of the heterotic string. This transformation generates the U(1)nU(1)^n vector field content of the whole low--energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio

    Pillars of creation amongst destruction: Star formation in molecular clouds near R136 in 30 Doradus

    Full text link
    New sensitive CO(2-1) observations of the 30 Doradus region in the Large Magellanic Cloud are presented. We identify a chain of three newly discovered molecular clouds we name KN1, KN2 and KN3 lying within 2--14 pc in projection from the young massive cluster R136 in 30 Doradus. Excited H2_2 2.12μ\mum emission is spatially coincident with the molecular clouds, but ionized Brγ\gamma emission is not. We interpret these observations as the tails of pillar-like structures whose ionized heads are pointing towards R136. Based on infrared photometry, we identify a new generation of stars forming within this structure.Comment: Accepted for publication in ApJ (includes 13 pages, 8 figures). For higher resolution figures please see http://www.das.uchile.cl/~vkalari/staplervk.pd

    Nonadiabatic charged spherical evolution in the postquasistatic approximation

    Full text link
    We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in General Relativity. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstr\"om exterior solution. Two models are considered: i) a Schwarzschild-like shell in the diffusion limit; ii) a Schwarzschild-like interior in the free streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.Comment: 11 pages, 16 Figures. Accepted for publication in Phys Rev

    Echoes and revival echoes in systems of anharmonically confined atoms

    Full text link
    We study echoes and what we call 'revival echoes' for a collection of atoms that are described by a single quantum wavefunction and are confined in a weakly anharmonic trap. The echoes and revival echoes are induced by applying two, successive temporally localized potential perturbations to the confining potential, one at time t=0t=0, and a smaller one at time t=τt=\tau. Pulse-like responses in the expectation value of position are predicted at $t \approx n\tau$ ($n=2,3,...$) and are particularly evident at $t \approx 2\tau$. A novel result of our study is the finding of 'revival echoes'. Revivals (but not echoes) occur even if the second perturbation is absent. In particular, in the absence of the second perturbation, the response to the first perturbation dies away, but then reassembles, producing a response at revival times $mT_x$ ($m=1,2,...$). Including the second perturbation at $t=\tau$, we find temporally localized responses, revival echoes, both before and after $t\approx mT_x$, e.g., at $t\approx m T_x-n \tau$ (pre-revival echoes) and at $t\approx mT_x+n\tau$, (post-revival echoes), where $m$ and $n$ are $1,2,...$ . Depending on the form of the perturbations, the 'principal' revival echoes at $t \approx T_x \pm \tau$ can be much larger than the echo at $t \approx 2\tau$. We develop a perturbative model for these phenomena, and compare its predictions to the numerical solutions of the time-dependent Schr\"odinger Equation. The scaling of the size of the various echoes and revival echoes as a function of the symmetry and size of the perturbations applied at $t=0$ and $t=\tau$ is investigated. We also study the presence of revivals and revival echoes in higher moments of position, , p>1p>1, and the effect of atom-atom interactions on these phenomena.Comment: 33 pages, 13 figures, corrected typos and added reference

    Chiral models in dilaton-Maxwell gravity

    Get PDF
    We study symmetry properties of the Einstein-Maxwell theory nonminimaly coupled to the dilaton field. We consider a static case with pure electric (magnetic) Maxwell field and show that the resulting system becomes a nonlinear sigma-model wich possesses a chiral representation. We construct the corresponding chiral matrix and establish a representation which is related to the pair of Ernst-like potentials. These potentials are used for separation of the symmetry group into the gauge and nongauge (charging) sectors. New variables, which linearize the action of charging symmetries, are also established; a solution generation technique based on the use of charging symmetries is formulated. This technique is used for generation of the elecricaly (magneticaly) charged dilatonic fields from the static General Relativity ones.Comment: 9 pages in LaTex; published in Gen. Rel. Grav. 32 (2000) pp 1389-139

    Expansion-Free Cavity Evolution: Some exact Analytical Models

    Full text link
    We consider spherically symmetric distributions of anisotropic fluids with a central vacuum cavity, evolving under the condition of vanishing expansion scalar. Some analytical solutions are found satisfying Darmois junction conditions on both delimiting boundary surfaces, while some others require the presence of thin shells on either (or both) boundary surfaces. The solutions here obtained model the evolution of the vacuum cavity and the surrounding fluid distribution, emerging after a central explosion. This study complements a previously published work where modeling of the evolution of such kind of systems was achieved through a different kinematical condition.Comment: 9 pages, Revtex. Typos corrected. Published in Int. J. Mod. Phys.

    Effective Monopoles within Thick Branes

    Full text link
    The monopole mass is revealed to be considerably modified in the thick braneworld paradigm, and depends on the position of the monopole in the brane as well. Accordingly, the monopole radius continuously increases, leading to an unacceptable setting that can be circumvented when the brane thickness has an upper limit. Despite such peculiar behavior, the quantum corrections accrued -- involving the classical monopole solution -- are shown to be still under control. We analyze the monopole's peculiarities also taking into account the localization of the gauge fields. Furthermore, some additional analysis in the thick braneworld context and the similar behavior evinced by the topological string are investigated.Comment: 7 pages, 1 figur
    corecore