8 research outputs found

    Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data

    Get PDF
    High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude

    The diagnosing behaviour of intelligent tutoring systems

    Get PDF
    Intelligent Tutoring Systems (ITSs) determine the quality of student responses by means of a diagnostic process, and use this information for providing feedback and determining a student’s progress. This paper studies how ITSs diagnose student responses. In a systematic literature review we compare the diagnostic processes of 40 ITSs in various domains. We investigate what kinds of diagnoses are performed and how they are obtained, and how the processes compare across domains. The analysis identifies eight aspects that ITSs diagnose: correctness, difference, redundancy, type of error, common error, order, preference, and time. All ITSs diagnose correctness of a step. Mathematics tutors diagnose common errors more often than programming tutors, and programming tutors diagnose type of error more often than mathematics tutors. We discuss a general model for representing diagnostic processes

    Pharmacokinetic profile of single and repeated oral doses of MDMA in squirrel monkeys: Relationship to lasting effects on brain serotonin neurons

    No full text
    A large body of data indicates that (7)3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) can damage brain serotonin neurons in animals. However, the relevance of these preclinical data to humans is uncertain, because doses and routes of administration used in animals have generally differed from those used by humans. Here, we examined the pharmacokinetic profile of MDMA in squirrel monkeys after different routes of administration, and explored the relationship between acute plasma MDMA concentrations after repeated oral dosing and subsequent brain serotonin deficits. Oral MDMA administration engendered a plasma profile of MDMA in squirrel monkeys resembling that seen in humans, although the half-life of MDMA in monkeys is shorter (3 vs 6–9 h). MDMA was biotransformed into MDA, and the plasma ratio of MDA to MDMA was 3–5/100, similar to that in humans. MDMA accumulation in squirrel monkeys was nonlinear, and plasma levels were highly correlated with regional brain serotonin deficits observed 2 weeks later. The present results indicate that plasma concentrations of MDMA shown here to produce lasting serotonergic deficits in squirrel monkeys overlap those reported by other laboratories in some recreational ‘ecstasy’ consumers, and are two to three times higher than those found in humans administered a single 100–150 mg dose of MDMA in a controlled setting. Additional studies are needed on the relative sensitivity of brain serotonin neurons to MDMA toxicity in humans and non-human primates, the pharmacokinetic parameter(s) of MDMA most closely linked to the neurotoxic process, and metabolites other than MDA that may play a role.Annis Mechan, Jie Yuan, George Hatzidimitriou, Rodney J Irvine, Una D McCann and George A Ricaurt
    corecore