2,834 research outputs found

    Unstable states in QED of strong magnetic fields

    Get PDF
    We question the use of stable asymptotic scattering states in QED of strong magnetic fields. To correctly describe excited Landau states and photons above the pair creation threshold the asymptotic fields are chosen as generalized Licht fields. In this way the off-shell behavior of unstable particles is automatically taken into account, and the resonant divergences that occur in scattering cross sections in the presence of a strong external magnetic field are avoided. While in a limiting case the conventional electron propagator with Breit-Wigner form is obtained, in this formalism it is also possible to calculate SS-matrix elements with external unstable particles.Comment: Revtex, 7 pages. To appear in Phys. Rev. D53(2

    Les bulles « robustes »:Pourquoi il faut construire des logements en région parisienne

    Get PDF
    « Bulle » ou « pas bulle » ? La question taraude les observateurs et les acteurs du marché immobilier français. Nous examinons dans cet article les éléments empiriques et théoriques qui expliquent la hausse des prix récente et sa résistance aux retournements conjoncturels. En combinant la notion de bulle économique, les arguments de l’économie spatiale et une analyse d’économie politique, nous suggérons que la valorisation importante de l’immobilier en France est le résultat d’une logique rationnelle et conforte les intérêts des acteurs locaux. Dès lors, la forte valorisation peut être considérée comme une « bulle robuste », à même de résister à des chocs importants. Cette bulle organise un transfert intergénérationnel et peut avoir des effets positifs. Elle peut également renforcer la ségrégation spatiale, alimenter les inégalités territoriales et empêcher d’exploiter les économies d’agglomération possibles. L’analyse est détaillée sur la région Ile-de-France où ces phénomènes sont particulièrement marqués

    Equation of state of a strongly magnetized hydrogen plasma

    Get PDF
    The influence of a constant uniform magnetic field on the thermodynamic properties of a partially ionized hydrogen plasma is studied. Using the method of Green' s function various interaction contributions to the thermodynamic functions are calculated. The equation of state of a quantum magnetized plasma is presented within the framework of a low density expansion up to the order e^4 n^2 and, additionally, including ladder type contributions via the bound states in the case of strong magnetic fields (2.35*10^{5} T << B << 2.35*10^{9} T). We show that for high densities (n=10^{27-30} m^{-3}) and temperatures T=10^5 - 10^6 K typical for the surface of neutron stars nonideality effects as, e.g., Debye screening must be taken into account.Comment: 12 pages, 2 Postscript figures. uses revtex, to appear in Phys. Rev.

    Proof of concept study of a novel pacemapping algorithm as a basis to guide ablation of ventricular arrhythmias.

    Get PDF
    Aims: To determine if a software algorithm can use an individualized distance-morphology difference model, built from three initial pacemaps, to prospectively locate the exit site (ES) of ventricular arrhythmias (VA). Methods and results: Consecutive patients undergoing ablation of VA from a single centre were recruited. During mapping, three initial pacing points were collected in the chamber of interest and the navigation algorithm applied to predict the ES, which was corroborated by conventional mapping techniques. Thirty-two patients underwent ES prediction over 35 procedures. Structural heart disease was present in 16 (7 ischaemic cardiomyopathy, 9 non-ischaemic cardiomyopathy), median ejection fraction 45% [Interquartile range (IQR) 26]. The remainder had normal hearts. The navigation algorithm was applied to 46 VA (24 left ventricle, 11 right ventricular outflow tract, 5 left ventricular outflow tract, 4 right ventricle, 2 epicardial) and successfully located the site of best pacemap match in 45 within a median area of 196.5 mm2 (IQR 161.3, range 46.6-1288.2 mm2). Conclusions: In a diverse population of patients with and without structural heart disease, the ES of VA can be accurately and reliably identified to within a clinically useful target area using a simple software navigation algorithm based on pacemapping

    Innovative methods in European road freight transport statistics: A pilot study

    Get PDF
    By using innovative methods, such as the automated transfer of corporate electronic data to National Statistical Institutions, official transport data can be significantly improved in terms of reliability, costs and the burden on respondents. In this paper, we show that the automated compilation of statistical reports is possible and feasible. Based on previous findings, a new method and tool were developed in cooperation with two business partners from the logistics sector in Austria. The results show that the prototype could successfully be implemented at the partner companies. Improved data quality can lead to more reliable analyses in various fields. Compared to actual volumes of investments into transport, the costs of transport statistics are limited. By using the new and innovative data collection techniques, these costs can even be reduced in the long run; at the same time, the risk of bad investments and wrong decisions caused by analyses relying on poor data quality can be reduced. This results in a substantial value for business, research, the economy and the society

    Compton Scattering in Ultra-Strong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime

    Get PDF
    This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields (>4×1012 > 4 \times 10^{12} G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that strong magnetic fields significantly lower the Compton scattering cross section below and at the resonance, when the incident photon energy exceeds mec2m_ec^2 in the electron rest frame. The cross section is strongly dependent on the polarization of the final scattered photon. Below the cyclotron fundamental, mostly photons of perpendicular polarization are produced in scatterings, a situation that also arises above this resonance for sub-critical fields. However, an interesting discovery is that for super-critical fields, a preponderance of photons of parallel polarization results from scatterings above the cyclotron fundamental. This characteristic is both a relativistic and magnetic effect not present in the Thomson or Klein-Nishina limits.Comment: AASTeX format, 31 pages included 7 embedded figures, accepted for publication in The Astrophysical Journa

    Spin-Dependent Cyclotron Decay Rates in Strong Magnetic Fields

    Full text link
    Cyclotron decay and absorption rates have been well studied in the literature, focusing primarily on spectral, angular and polarization dependence. Astrophysical applications usually do not require retention of information on the electron spin state, and these are normally averaged in obtaining the requisite rates. In magnetic fields, higher order quantum processes such as Compton scattering become resonant at the cyclotron frequency and its harmonics, with the resonances being formally divergent. Such divergences are usually eliminated by accounting for the finite lifetimes of excited Landau states. This practice requires the use of spin-dependent cyclotron rates in order to obtain accurate determinations of process rates very near cyclotronic resonances, the phase space domain most relevant for certain applications to pulsar models. This paper develops previous results in the literature to obtain compact analytic expressions for cyclotron decay rates/widths in terms of a series of Legendre functions of the second kind; these expressions can be expediently used in astrophysical models. The rates are derived using two popular eigenstate formalisms, namely that due to Sokolov and Ternov, and that due to Johnson and Lippmann. These constitute two sets of eigenfunctions of the Dirac equation that diagonalize different operators, and accordingly yield different spin-dependent cyclotron rates. This paper illustrates the attractive Lorentz transformation characteristics of the Sokolov and Ternov formulation, which is another reason why it is preferable when electron spin information must be explicitly retained.Comment: 11 pages, 2 embedded figures, apjgalley format, To appear in The Astrophysical Journal, Vol 630, September 1, 2005 issu

    Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation

    Get PDF
    Calculations of reaction rates for the third-order QED process of photon splitting in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant advances beyond the work of Mentzel et al. by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.
    corecore