94 research outputs found
Selective Dry Etch for Defining Ohmic Contacts for High Performance ZnO TFTs
Recently, gigahertz RF performance has been demonstrated in zinc oxide (ZnO) TFT. However, the need arises for sub-micron channel length (Lc) dimensions to extend these results into X-band frequency range of operation. This thesis is a pioneering effort identifying device access materials to be selectively etched to ZnO via plasma-assisted etch (PAE) to avoid processing limitations from traditional optical lithography channel definition methods. A subtractive etch process using CF4/O2 gas mixture was completed with various Ohmic contact materials to ZnO providing foundational research upon which nano-scale, high-frequency ZnO thin-film transistors (TFTs) could be fabricated. Molybdenum, tantalum, titanium tungsten 10-90, and tungsten metallic contact schemes to ZnO are investigated for their etch selectivities to ZnO and etch profiles. Tungsten displayed promising device scalability results with excellent aspect ratio and 200nm Lc. A new semiconductor-semiconductor contact interface to ZnO using nc-Si is initially reported with 15mA/mm current density and 18mS/mm transconductance. Nc-Si also displays promising scaling results through the subtractive etch process defined with e-beam lithography. Results included 157nm channel length, high aspect ratio, and high extrapolated current density of nearly 1A/mm at 100nm Lc and gate and drain voltages of 10V
Compton Scattering in Ultra-Strong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime
This paper explores the effects of strong magnetic fields on the Compton
scattering of relativistic electrons. Recent studies of upscattering and energy
loss by relativistic electrons that have used the non-relativistic, magnetic
Thomson cross section for resonant scattering or the Klein-Nishina cross
section for non-resonant scattering do not account for the relativistic quantum
effects of strong fields ( G). We have derived a
simplified expression for the exact QED scattering cross section for the
broadly-applicable case where relativistic electrons move along the magnetic
field. To facilitate applications to astrophysical models, we have also
developed compact approximate expressions for both the differential and total
polarization-dependent cross sections, with the latter representing well the
exact total QED cross section even at the high fields believed to be present in
environments near the stellar surfaces of Soft Gamma-Ray Repeaters and
Anomalous X-Ray Pulsars. We find that strong magnetic fields significantly
lower the Compton scattering cross section below and at the resonance, when the
incident photon energy exceeds in the electron rest frame. The cross
section is strongly dependent on the polarization of the final scattered
photon. Below the cyclotron fundamental, mostly photons of perpendicular
polarization are produced in scatterings, a situation that also arises above
this resonance for sub-critical fields. However, an interesting discovery is
that for super-critical fields, a preponderance of photons of parallel
polarization results from scatterings above the cyclotron fundamental. This
characteristic is both a relativistic and magnetic effect not present in the
Thomson or Klein-Nishina limits.Comment: AASTeX format, 31 pages included 7 embedded figures, accepted for
publication in The Astrophysical Journa
Spin-Dependent Cyclotron Decay Rates in Strong Magnetic Fields
Cyclotron decay and absorption rates have been well studied in the
literature, focusing primarily on spectral, angular and polarization
dependence. Astrophysical applications usually do not require retention of
information on the electron spin state, and these are normally averaged in
obtaining the requisite rates. In magnetic fields, higher order quantum
processes such as Compton scattering become resonant at the cyclotron frequency
and its harmonics, with the resonances being formally divergent. Such
divergences are usually eliminated by accounting for the finite lifetimes of
excited Landau states. This practice requires the use of spin-dependent
cyclotron rates in order to obtain accurate determinations of process rates
very near cyclotronic resonances, the phase space domain most relevant for
certain applications to pulsar models. This paper develops previous results in
the literature to obtain compact analytic expressions for cyclotron decay
rates/widths in terms of a series of Legendre functions of the second kind;
these expressions can be expediently used in astrophysical models. The rates
are derived using two popular eigenstate formalisms, namely that due to Sokolov
and Ternov, and that due to Johnson and Lippmann. These constitute two sets of
eigenfunctions of the Dirac equation that diagonalize different operators, and
accordingly yield different spin-dependent cyclotron rates. This paper
illustrates the attractive Lorentz transformation characteristics of the
Sokolov and Ternov formulation, which is another reason why it is preferable
when electron spin information must be explicitly retained.Comment: 11 pages, 2 embedded figures, apjgalley format, To appear in The
Astrophysical Journal, Vol 630, September 1, 2005 issu
Cooling Rates for Relativistic Electrons Undergoing Compton Scattering in Strong Magnetic Fields
For inner magnetospheric models of hard X-ray and gamma-ray emission in
high-field pulsars and magnetars, resonant Compton upscattering is anticipated
to be the most efficient process for generating continuum radiation. This is
due in part to the proximity of a hot soft photon bath from the stellar surface
to putative radiation dissipation regions in the inner magnetosphere. Moreover,
because the scattering process becomes resonant at the cyclotron frequency, the
effective cross section exceeds the classical Thomson value by over two orders
of magnitude, thereby enhancing the efficiency of continuum production and the
cooling of relativistic electrons. This paper presents computations of the
electron cooling rates for this process, which are needed for resonant Compton
models of non-thermal radiation from such highly-magnetized pulsars. The
computed rates extend previous calculations of magnetic Thomson cooling to the
domain of relativistic quantum effects, sampled near and above the quantum
critical magnetic field of 44.13 TeraGauss. This is the first exposition of
fully relativistic, quantum magnetic Compton cooling rates for electrons, and
it employs both the traditional Johnson and Lippman cross section, and a newer
Sokolov and Ternov (ST) formulation of Compton scattering in strong magnetic
fields. Such ST formalism is formally correct for treating spin-dependent
effects that are important in the cyclotron resonance, and has not been
addressed before in the context of cooling by Compton scattering. The QED
effects are observed to profoundly lower the rates below extrapolations of the
familiar magnetic Thomson results, as expected, when recoil and Klein-Nishina
reductions become important.Comment: 33 pages, 11 figures, accepted for publication in The Astrophysical
Journa
Pericardial Fat and Myocardial Perfusion in Asymptomatic Adults from the Multi-Ethnic Study of Atherosclerosis
BACKGROUND:Pericardial fat has adverse effects on the surrounding vasculature. Previous studies suggest that pericardial fat may contribute to myocardial ischemia in symptomatic individuals. However, it is unknown if pericardial fat has similar effects in asymptomatic individuals. METHODS:We determined the association between pericardial fat and myocardial blood flow (MBF) in 214 adults with no prior history of cardiovascular disease from the Minnesota field center of the Multi-Ethnic Study of Atherosclerosis (43% female, 56% Caucasian, 44% Hispanic). Pericardial fat volume was measured by computed tomography. MBF was measured by MRI at rest and during adenosine-induced hyperemia. Myocardial perfusion reserve (PR) was calculated as the ratio of hyperemic to resting MBF. RESULTS:Gender-stratified analyses revealed significant differences between men and women including less pericardial fat (71.9±31.3 vs. 105.2±57.5 cm(3), p<0.0001) and higher resting MBF (1.12±0.23 vs. 0.93±0.19 ml/min/g, p<0.0001), hyperemic MBF (3.49±0.76 vs. 2.65±0.72 ml/min/g, p<0.0001), and PR (3.19±0.78 vs. 2.93±0.89, p = 0.03) in women. Correlations between pericardial fat and clinical and hemodynamic variables were stronger in women. In women only (p = 0.01 for gender interaction) higher pericardial fat was associated with higher resting MBF (p = 0.008). However, this association was attenuated after accounting for body mass index or rate-pressure product. There were no significant associations between pericardial fat and hyperemic MBF or PR after multivariate adjustment in either gender. In logistic regression analyses there was also no association between impaired coronary vasoreactivity, defined as having a PR <2.5, and pericardial fat in men (OR, 1.18; 95% CI, 0.82-1.70) or women (OR, 1.11; 95% CI, 0.68-1.82). CONCLUSIONS:Our data fail to support an independent association between pericardial fat and myocardial perfusion in adults without symptomatic cardiovascular disease. Nevertheless, these findings highlight potentially important differences between asymptomatic and symptomatic individuals with respect to the underlying subclinical disease burden
Visceral Adiposity and the Risk of Metabolic Syndrome Across Body Mass Index The MESA Study
AbstractObjectivesThis study sought to evaluate differential effects of visceral fat (VF) and subcutaneous fat and their effects on metabolic syndrome (MetS) risk across body mass index (BMI) categories.BackgroundThe regional distribution of adipose tissue is an emerging risk factor for cardiometabolic disease, although serial changes in fat distribution have not been extensively investigated. VF and its alterations over time may be a better marker for risk than BMI in normal weight and overweight or obese individuals.MethodsWe studied 1,511 individuals in the MESA (Multi-Ethnic Study of Atherosclerosis) with adiposity assessment by computed tomography (CT). A total of 253 participants without MetS at initial scan underwent repeat CT (median interval 3.3 years). We used discrete Cox regression with net reclassification to investigate whether baseline and changes in VF area are associated with MetS.ResultsHigher VF was associated with cardiometabolic risk and coronary artery calcification, regardless of BMI. After adjustment, VF was more strongly associated with incident MetS than subcutaneous fat regardless of weight, with a 28% greater MetS hazard per 100 cm2/m VF area and significant net reclassification (net reclassification index: 0.44, 95% confidence interval [CI]: 0.29 to 0.60) over clinical risk. In individuals with serial imaging, initial VF (hazard ratio: 1.24 per 100 cm2/m, 95% CI: 1.08 to 1.44 per 100 cm2/m, p = 0.003) and change in VF (hazard ratio: 1.05 per 5% change, 95% CI: 1.01 to 1.08 per 5% change, p = 0.02) were associated with MetS after adjustment. Changes in subcutaneous fat were not associated with incident MetS after adjustment for clinical risk and VF area.ConclusionsVF is modestly associated with BMI. However, across BMI, a single measure of and longitudinal change in VF predict MetS, even accounting for weight changes. Visceral adiposity is essential to assessing cardiometabolic risk, regardless of age, race, or BMI, and may serve as a marker and target of therapy in cardiometabolic disease
Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation
Calculations of reaction rates for the third-order QED process of photon
splitting in strong magnetic fields traditionally have employed either the
effective Lagrangian method or variants of Schwinger's proper-time technique.
Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation
via an S-matrix formulation in the Landau representation. Advantages of such a
formulation include the ability to compute rates near pair resonances above
pair threshold. This paper presents new developments of the Landau
representation formalism as applied to photon splitting, providing significant
advances beyond the work of Mentzel et al. by summing over the spin quantum
numbers of the electron propagators, and analytically integrating over the
component of momentum of the intermediate states that is parallel to field. The
ensuing tractable expressions for the scattering amplitudes are satisfyingly
compact, and of an appearance familiar to S-matrix theory applications. Such
developments can facilitate numerical computations of splitting considerably
both below and above pair threshold. Specializations to two regimes of interest
are obtained, namely the limit of highly supercritical fields and the domain
where photon energies are far inferior to that for the threshold of
single-photon pair creation. In particular, for the first time the
low-frequency amplitudes are simply expressed in terms of the Gamma function,
its integral and its derivatives. In addition, the equivalence of the
asymptotic forms in these two domains to extant results from effective
Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.
Photon Splitting and Pair Creation in Highly Magnetized Pulsars
The absence of radio pulsars with long periods has lead to the popular notion
of a high P ``death line.'' In the standard picture, beyond this boundary,
pulsars with low spin rates cannot accelerate particles above the stellar
surface to high enough energies to initiate pair cascades, and the pair
creation needed for radio emission is strongly suppressed. In this paper we
explore the possibility of another pulsar ``death line'' in the context of
polar cap models, corresponding to high magnetic fields B in the upper portion
of the period-period derivative diagram, a domain where few radio pulsars are
observed. The origin of this high B boundary, which may occur when B becomes
comparable to or exceeds Gauss, is also due
to the suppression of magnetic pair creation, but primarily because of
ineffective competition with magnetic photon splitting. Threshold pair creation
also plays a prominent role in the suppression of cascades. We present Monte
Carlo calculations of the pair yields in photon splitting/pair cascades which
show that, in the absence of scattering effects, pair production is effectively
suppressed, but only if all three modes of photon splitting allowed by QED are
operating in high fields. This paper describes the probable shape and position
of the new ``death line,'' above which pulsars are expected to be radio quiet,
but perhaps still X-ray and gamma-ray bright. The hypothesized existence of
radio-quiet sources finds dramatic support in the recent discovery of
ultra-strong fields in Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars.
Guidelines for moderate to high B pulsar searches at radio wavelengths and also
in the soft and hard gamma-ray bands are presented.Comment: 19 pages, including 1 table and 9 figures, AASTeX apjgalley format,
To appear in The Astrophysical Journal, Vol 547, February 1, 2001 issu
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
- …