203 research outputs found
Detection of Crab Giant Pulses Using the Mileura Widefield Array Low Frequency Demonstrator Field Prototype System
We report on the detection of giant pulses from the Crab Nebula pulsar at a
frequency of 200 MHz using the field deployment system designed for the Mileura
Widefield Array's Low Frequency Demonstrator (MWA-LFD). Our observations are
among the first high-quality detections at such low frequencies. The measured
pulse shapes are deconvolved for interstellar pulse broadening, yielding a
pulse-broadening time of 670100 s, and the implied strength of
scattering (scattering measure) is the lowest that is estimated towards the
Crab nebula from observations made so far. The sensitivity of the system is
largely dictated by the sky background, and our simple equipment is capable of
detecting pulses that are brighter than 9 kJy in amplitude. The brightest
giant pulse detected in our data has a peak amplitude of 50 kJy, and the
implied brightness temperature is K. We discuss the giant pulse
detection prospects with the full MWA-LFD system. With a sensitivity over two
orders of magnitude larger than the prototype equipment, the full system will
be capable of detecting such bright giant pulses out to a wide range of
Galactic distances; from 8 to 30 kpc depending on the frequency.
The MWA-LFD will thus be a highly promising instrument for the studies of giant
pulses and other fast radio transients at low frequencies.Comment: 10 pages, 6 figures, Accepted for publication in the Astrophysical
Journa
The Murchison Widefield Array: Design Overview
The Murchison Widefield Array (MWA) is a dipole-based aperture array
synthesis telescope designed to operate in the 80-300 MHz frequency range. It
is capable of a wide range of science investigations, but is initially focused
on three key science projects. These are detection and characterization of
3-dimensional brightness temperature fluctuations in the 21cm line of neutral
hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10,
solar imaging and remote sensing of the inner heliosphere via propagation
effects on signals from distant background sources,and high-sensitivity
exploration of the variable radio sky. The array design features 8192
dual-polarization broad-band active dipoles, arranged into 512 tiles comprising
16 dipoles each. The tiles are quasi-randomly distributed over an aperture
1.5km in diameter, with a small number of outliers extending to 3km. All
tile-tile baselines are correlated in custom FPGA-based hardware, yielding a
Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point
spread function (PSF) quality. The correlated data are calibrated in real time
using novel position-dependent self-calibration algorithms. The array is
located in the Murchison region of outback Western Australia. This region is
characterized by extremely low population density and a superbly radio-quiet
environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings
of the IEE
A new layout optimization technique for interferometric arrays, applied to the MWA
Antenna layout is an important design consideration for radio interferometers
because it determines the quality of the snapshot point spread function (PSF,
or array beam). This is particularly true for experiments targeting the 21 cm
Epoch of Reionization signal as the quality of the foreground subtraction
depends directly on the spatial dynamic range and thus the smoothness of the
baseline distribution. Nearly all sites have constraints on where antennas can
be placed---even at the remote Australian location of the MWA (Murchison
Widefield Array) there are rock outcrops, flood zones, heritages areas,
emergency runways and trees. These exclusion areas can introduce spatial
structure into the baseline distribution that enhance the PSF sidelobes and
reduce the angular dynamic range. In this paper we present a new method of
constrained antenna placement that reduces the spatial structure in the
baseline distribution. This method not only outperforms random placement
algorithms that avoid exclusion zones, but surprisingly outperforms random
placement algorithms without constraints to provide what we believe are the
smoothest constrained baseline distributions developed to date. We use our new
algorithm to determine antenna placements for the originally planned MWA, and
present the antenna locations, baseline distribution, and snapshot PSF for this
array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA
Interferometric imaging with the 32 element Murchison Wide-field Array
The Murchison Wide-field Array (MWA) is a low frequency radio telescope,
currently under construction, intended to search for the spectral signature of
the epoch of re-ionisation (EOR) and to probe the structure of the solar
corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles
grouped into 512 tiles, and be capable of imaging the sky south of 40 degree
declination, from 80 MHz to 300 MHz with an instantaneous field of view that is
tens of degrees wide and a resolution of a few arcminutes. A 32-station
prototype of the MWA has been recently commissioned and a set of observations
taken that exercise the whole acquisition and processing pipeline. We present
Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees
wide centered on Pictoris A. These images demonstrate the capacity and
stability of a real-time calibration and imaging technique employing the
weighted addition of warped snapshots to counter extreme wide field imaging
distortions.Comment: Accepted for publication in PASP. This is the draft before journal
typesetting corrections and proofs so does contain formatting and journal
style errors, also has with lower quality figures for space requirement
The Murchison Widefield Array: the Square Kilometre Array Precursor at low radio frequencies
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array
Precursor telescopes and is located at the Murchison Radio-astronomy
Observatory in the Murchison Shire of the mid-west of Western Australia, a
location chosen for its extremely low levels of radio frequency interference.
The MWA operates at low radio frequencies, 80-300 MHz, with a processed
bandwidth of 30.72 MHz for both linear polarisations, and consists of 128
aperture arrays (known as tiles) distributed over a ~3 km diameter area. Novel
hybrid hardware/software correlation and a real-time imaging and calibration
systems comprise the MWA signal processing backend. In this paper the as-built
MWA is described both at a system and sub-system level, the expected
performance of the array is presented, and the science goals of the instrument
are summarised.Comment: Submitted to PASA. 11 figures, 2 table
The Murchison Widefield Array
It is shown that the excellent Murchison Radio-astronomy Observatory site
allows the Murchison Widefield Array to employ a simple RFI blanking scheme and
still calibrate visibilities and form images in the FM radio band. The
techniques described are running autonomously in our calibration and imaging
software, which is currently being used to process an FM-band survey of the
entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016].
6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI
Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland
The EoR Sensitivity of the Murchison Widefield Array
Using the final 128 antenna locations of the Murchison Widefield Array (MWA),
we calculate its sensitivity to the Epoch of Reionization (EoR) power spectrum
of red- shifted 21 cm emission for a fiducial model and provide the tools to
calculate the sensitivity for any model. Our calculation takes into account
synthesis rotation, chro- matic and asymmetrical baseline effects, and excludes
modes that will be contaminated by foreground subtraction. For the fiducial
model, the MWA will be capable of a 14{\sigma} detection of the EoR signal with
one full season of observation on two fields (900 and 700 hours).Comment: 5 pages, 4 figures, 1 table, Accepted for publication in MNRAS
Letters. Supplementary material will be available in the published version,
or by contacting the author
Detection of Crab Giant Pulses Using the Mileura Widefield Array Low Frequency Demonstrator Field Prototype System
We report on the detection of giant pulses from the Crab Nebula pulsar at a frequency of 200 MHz using the field deployment system designed for the Mileura Widefield Array's Low Frequency Demonstrator (MWA-LFD). Our observations are among the first high-quality detections at such low frequencies. The measured pulse shapes are deconvolved for interstellar pulse broadening, yielding a pulse-broadening time of 670 ± 100 μs, and the implied strength of scattering (scattering measure) is the lowest that is estimated toward the Crab Nebula from observations made so far. The sensitivity of the system is largely dictated by the sky background, and our simple equipment is capable of detecting pulses that are brighter than ∼9 kJy in amplitude. The brightest giant pulse detected in our data has a peak amplitude of ∼50 kJy, and the implied brightness temperature is 10 31.6 K. We discuss the giant pulse detection prospects with the full MWA-LFD system. With a sensitivity over 2 orders of magnitude larger than the prototype equipment, the full system will be capable of detecting such bright giant pulses out to a wide range of Galactic distances; from ∼ 15 to ∼30 kpc depending on the frequency. The MWA-LFD will thus be a highly promising instrument for the studies of giant pulses and other fast radio transients at low frequencies
Field Deployment of Prototype Antenna Tiles for the Mileura Widefield Array--Low Frequency Demonstrator
Experiments were performed with prototype antenna tiles for the Mileura
Widefield Array--Low Frequency Demonstrator (MWA-LFD) to better understand the
widefield, wideband properties of their design and to characterize the radio
frequency interference (RFI) between 80 and 300 MHz at the site in Western
Australia. Observations acquired during the six month deployment confirmed the
predicted sensitivity of the antennas, sky-noise dominated system temperatures,
and phase-coherent interferometric measurements. The radio spectrum is
remarkably free of strong terrestrial signals, with the exception of two narrow
frequency bands allocated to satellite downlinks and rare bursts due to
ground-based transmissions being scattered from aircraft and meteor trails.
Results indicate the potential of the MWA-LFD to make significant achievements
in its three key science objectives: epoch of reionziation science,
heliospheric science, and radio transient detection.Comment: Accepted by AJ. 17 pages with figure
- …