19 research outputs found

    The supersoft X-ray source in V5116 Sagittarii: I. the high resolution spectra

    Get PDF
    Context. Classical nova explosions occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. Nova V5116 Sgr 2005b was observed as a bright and variable supersoft X-ray source by XMM-Newton in March 2007, 610 days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. Aims. In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. Methods. We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. Results. The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km s-1, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova.Postprint (published version

    Multiband study of RX J0838-2827 and XMM J083850.4-282759: a new asynchronous magnetic cataclysmic variable and a candidate transitional millisecond pulsar

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017. The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.In a search for the counterpart to the Fermi-LAT source 3FGL J0838.8-2829, we performed a multiwavelength campaign: in the X-ray band with Swift and XMM-Newton; in the infrared and optical with OAGH, ESO-NTT and IAC80; and in the radio with ATCA observations. We also used archival hard X-ray data obtained by INTEGRAL. We report on three X-ray sources consistent with the position of the Fermi-LAT source.We confirm the identification of the brightest object, RX J0838-2827, as a magnetic cataclysmic variable that we recognize as an asynchronous system (not associated with the Fermi-LAT source). RX J0838-2827 is extremely variable in the X-ray and optical bands, and timing analysis reveals the presence of several periodicities modulating its X-ray and optical emission. The most evident modulations are interpreted as being caused by the binary system orbital period of ~1.64 h and the white dwarf spin period of ~1.47 h. A strong flux modulation at ~15 h is observed at all energy bands, consistent with the beat frequency between spin and orbital periods. Optical spectra show prominent Hß, He I and He II emission lines that are Doppler-modulated at the orbital period and at the beat period. Therefore, RX J0838-2827 accretes through a disc-less configuration and could be either a strongly asynchronous polar or a rare example of a pre-polar system on its way to reaching synchronism. Regarding the other two X-ray sources, XMM J083850.4-282759 showed a variable X-ray emission, with a powerful flare lasting for ~600 s, similar to what is observed in transitional millisecond pulsars during the subluminous disc state: this observation possibly means that this source can be associated with the Fermi-LAT source.Peer ReviewedPostprint (published version

    A Trojan horse approach to the production of 18F in Novae

    Get PDF
    Crucial information on nova nucleosynthesis can be potentially inferred from ¿-ray signals powered by 18F decay. Therefore, the reaction network producing and destroying this radioactive isotope has been extensively studied in the last years. Among those reactions, the 18F(p, a)15O cross-section has been measured by means of several dedicated experiments, both using direct and indirect methods. The presence of interfering resonances in the energy region of astrophysical interest has been reported by many authors including the recent applications of the Trojan Horse Method. In this work, we evaluate what changes are introduced by the Trojan Horse data in the 18F(p, a)15O astrophysical factor recommended in a recent R-matrix analysis, accounting for existing direct and indirect measurements. Then the updated reaction rate is calculated and parameterized and implications of the new results on nova nucleosynthesis are thoroughly discussed.Peer ReviewedPostprint (author's final draft

    Binary systems and their nuclear explosions

    No full text
    Peer Reviewe

    The supersoft X-ray source in V5116 Sagittarii: I. the high resolution spectra

    No full text
    Context. Classical nova explosions occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. Nova V5116 Sgr 2005b was observed as a bright and variable supersoft X-ray source by XMM-Newton in March 2007, 610 days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. Aims. In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. Methods. We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. Results. The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km s-1, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova

    Towards a theory of mediated communication

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:4335.26205(HPL--97-78) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Classical and recurrent nova models

    No full text
    Remarkable progress in the understanding of nova outbursts has been achieved through combined efforts in photometry, spectroscopy and numerical simulations. According to the thermonuclear runaway model, novae are powered by thermonuclear explosions in the hydrogen-rich envelopes transferred from a low-mass stellar companion onto a close white dwarf star. Extensive numerical simulations in 1-D have shown that the accreted envelopes attain peak temperatures ranging between 108 and 4 × 108 K, for about several hundred seconds, hence allowing extensive nuclear processing which eventually shows up in the form of nucleosynthetic fingerprints in the ejecta. Indeed, it has been claimed that novae can play a certain role in the enrichment of the interstellar medium through a number of intermediate-mass elements. This includes 17O, 15N, and 13C, systematically overproduced with respect to solar abundances, plus a lower contribution in a number of other species (A < 40), such as 7Li, 19F, or 26Al. At the turn of the XXI Century, classical novae have entered the era of multidimensional models, which provide a new insight into the physical mechanisms that drive mixing at the core-envelope interface. In this review, we will present hydrodynamic models of classical novae, from the onset of accretion up to the explosion and ejection stages, both for classical and recurrent novae, with special emphasis on their gross observational properties and their associated nucleosynthesis. The impact of nuclear uncertainties on the final yields will be discussed. Recent results from 2-D models of mixing during classical nova outbursts will also be presented
    corecore