19 research outputs found
Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia
BACKGROUND: Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: a. Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. b. Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. c. Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. METHODS: We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. RESULTS: Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. CONCLUSIONS: Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2
The expression levels of prolyl oligopeptidase responds not only to neuroinflammation but also to systemic inflammation upon liver failure in rat models and cirrhotic patients
Abstract
Background
Liver failure in experimental animals or in human cirrhosis elicits neuroinflammation. Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory events in neurodegenerative diseases: PREP protein levels are increased in brain glial cells upon neuroinflammatory insults, but the circulating PREP activity levels are decreased in multiple sclerosis patients in a process probably mediated by bioactive peptides. In this work, we studied the variation of PREP levels upon liver failure and correlated it with several inflammatory markers to conclude on the relation of PREP with systemic and/or neuroinflammation.
Methods
PREP enzymatic activity and protein levels measured with immunological techniques were determined in the brain and plasma of rats with portacaval shunt (PCS) and after treatment with ibuprofen. Those results were compared with the levels of PREP measured in plasma from cirrhotic patients with or without minimal hepatic encephalopathy (MHE). Levels of several pro-inflammatory cytokines and those of NO/cGMP homeostasis metabolites were measured in PCS rats and cirrhotic patients to conclude on the role of PREP in inflammation.
Results
In PCA rats, we found that PREP levels are significantly increased in the hippocampus, striatum and cerebellum, that in the cerebellum the PREP increase was significantly found in the extracellular space and that the levels were restored to those measured in control rats after administration of an anti-inflammatory agent, ibuprofen. In cirrhotic patients, circulatory PREP activity was found to correlate to systemic and neuroinflammatory markers and had a negative correlation with the severity of the disease, although no clear relation to MHE.
Conclusions
These results support the idea that PREP levels could be used as indicators of cirrhosis severity in humans, and using other markers, it might contribute to assessing the level of neuroinflammation in those patients. This work reports, for the first time, that PREP is secreted to the extracellular space in the cerebellum most probably due to glial activation and supports the role of the peptidase in the inflammatory response
Rats with minimal hepatic encephalopathy due to portacaval shunt show differential increase of translocator protein (18 kDa) binding in different brain areas, which is not affected by chronic MAP-kinase p38 inhibition.
Neuroinflammation plays a main role in neurological deficits in rats with minimal hepatic encephalopathy (MHE) due to portacaval shunt (PCS). Treating PCS rats with SB239063, an inhibitor of MAP-kinase-p38, reduces microglial activation and brain inflammatory markers and restores cognitive and motor function. The translocator protein-(18-kDa) (TSPO) is considered a biomarker of neuro-inflammation. TSPO is increased in brain of PCS rats and of cirrhotic patients that died in hepatic coma. Rats with MHE show strong microglial activation in cerebellum and milder in other areas when assessed by MHC-II immunohistochemistry. This work aims were assessing: 1) whether binding of TSPO ligands is selectively increased in cerebellum in PCS rats; 2) whether treatment with SB239063 reduces binding of TSPO ligands in PCS rats; 3) which cell type (microglia, astrocytes) increases TSPO expression. Quantitative autoradiography was used to assess TSPO-selective (3)H-(R)-PK11195 binding to different brain areas. TSPO expression increased differentially in PCS rats, reaching mild expression in striatum or thalamus and very high levels in cerebellum. TSPO was expressed in astrocytes and microglia. Treatment with SB239063 did not reduces (3)[H]-PK11195 binding in PCS rats. SB239063 reduces microglial activation and levels of inflammatory markers, but not binding of TSPO ligands. This indicates that SB239063-induced neuroinflammation reduction in PCS rats is not mediated by effects on TSPO. Also, enhanced TSPO expression is not always associated with cognitive or motor deficits. If enhanced TSPO expression plays a role in mechanisms leading to neurological alterations in MHE, SB239063 would interfere these mechanisms at a later step
In vivo administration of extracellular cGMP normalizes TNF-α and membrane expression of AMPA receptors in hippocampus and spatial reference memory but not IL-1β, NMDA receptors in membrane and working memory in hyperammonemic rats.
Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1β, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors