18,830 research outputs found

    Spin chain sigma models with fermions

    Get PDF
    The complete one-loop planar dilatation operator of N=4 supersymmetric Yang-Mills is isomorphic to the hamiltonian of an integrable PSU(2,2|4) quantum spin chain. We construct the non-linear sigma models describing the continuum limit of the SU(1|3) and SU(2|3) sectors of the complete N=4 chain. We explicitely identify the spin chain sigma model with the one for a superstring moving in AdS_5xS^5 with large angular momentum along the five-sphere.Comment: 16 pages. Latex. v2: Misprints corrected and references adde

    Sustained plankton blooms under open chaotic flows

    Get PDF
    We consider a predator-prey model of planktonic population dynamics, of excitable character, living in an open and chaotic fluid flow, i.e., a state of fluid motion in which fluid trajectories are unbounded but a chaotic region exists that is restricted to a localized area. Despite that excitability is a transient phenomenon and that fluid trajectories are continuously leaving the system, there is a regime of parameters where the excitation remains permanently in the system, given rise to a persistent plankton bloom. This regime is reached when the time scales associated to fluid stirring become slower than the ones associated to biological growth.Comment: 14 pages, 3 figure

    Non-Unitarity vs sterile neutrinos at DUNE

    Full text link
    Neutrino masses are one of the most promising open windows to physics beyond the Standard Model (SM). Several extensions of the SM which accommodate neutrino masses require the addition of right-handed neutrinos to its particle content. These extra fermions will either be kinematically accessible (sterile neutrinos) or not (deviations from Unitarity of the PMNS matrix) but at some point they will impact neutrino oscillation searches. We explore the differences and similitudes between the two cases and compare their present bounds with the expected sensitivities of DUNE. We conclude that Non-Unitarity (NU) effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments.Comment: Talk and poster presented at NuPhys2016 (London, 12-14 December 2016). 8 pages, LaTeX, 4 eps figures. Based on arXiv:1609.0863

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    Spatial Patterns in Chemically and Biologically Reacting Flows

    Full text link
    We present here a number of processes, inspired by concepts in Nonlinear Dynamics such as chaotic advection and excitability, that can be useful to understand generic behaviors in chemical or biological systems in fluid flows. Emphasis is put on the description of observed plankton patchiness in the sea. The linearly decaying tracer, and excitable kinetics in a chaotic flow are mainly the models described. Finally, some warnings are given about the difficulties in modeling discrete individuals (such as planktonic organisms) in terms of continuous concentration fields.Comment: 41 pages, 10 figures; To appear in the Proceedings of the 2001 ISSAOS School on 'Chaos in Geophysical Flows

    Spatial patterns of competing random walkers

    Get PDF
    We review recent results obtained from simple individual-based models of biological competition in which birth and death rates of an organism depend on the presence of other competing organisms close to it. In addition the individuals perform random walks of different types (Gaussian diffusion and L\'{e}vy flights). We focus on how competition and random motions affect each other, from which spatial instabilities and extinctions arise. Under suitable conditions, competitive interactions lead to clustering of individuals and periodic pattern formation. Random motion has a homogenizing effect and then delays this clustering instability. When individuals from species differing in their random walk characteristics are allowed to compete together, the ones with a tendency to form narrower clusters get a competitive advantage over the others. Mean-field deterministic equations are analyzed and compared with the outcome of the individual-based simulations.Comment: 38 pages, including 6 figure

    Species clustering in competitive Lotka-Volterra models

    Get PDF
    We study the properties of Lotka-Volterra competitive models in which the intensity of the interaction among species depends on their position along an abstract niche space through a competition kernel. We show analytically and numerically that the properties of these models change dramatically when the Fourier transform of this kernel is not positive definite, due to a pattern forming instability. We estimate properties of the species distributions, such as the steady number of species and their spacings, for different types of kernels.Comment: 4 pages, 3 figure
    corecore