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Abstract

We review recent results obtained from simple individual-based models of
biological competition in which birth and death rates of an organism depend
on the presence of other competing organisms close to it. In addition the
individuals perform random walks of different types (Gaussian diffusion and
Lévy flights). We focus on how competition and random motions affect each
other, from which spatial instabilities and extinctions arise. Under suitable
conditions, competitive interactions lead to clustering of individuals and peri-
odic pattern formation. Random motion has a homogenizing effect and then
delays this clustering instability. When individuals from species differing in
their random walk characteristics are allowed to compete together, the ones
with a tendency to form narrower clusters get a competitive advantage over
the others. Mean-field deterministic equations are analyzed and compared
with the outcome of the individual-based simulations.

Keywords: Competition, Clustering, Pattern formation, Individual-based
model, Nonlocal interactions, Niche space, Random walks, Lévy flights

1. Introduction

Competitive interactions are among the basic building blocks shaping
ecosystems and driving evolution. In its basic form, competition refers to
the situation in which two organisms utilize the same resource to survive and
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grow. If one of them consumes the resource, it is no longer available for the
other, which will then experience a decrease in growth capacity, increase of
mortality, or both. This basic effect of competition as a limitation to growth
is already present in very early population dynamics mathematical models
such as the Verhulst or logistic equation (Ausloos and Dirickx, 2006), or in
its simplest generalization when taking into account spatial dispersion, the
Fisher or Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) partial differen-
tial equation (Okubo and Levin, 2001; Murray, 2002; Méndez et al., 2014).
Resource limitation in such models defines a carrying capacity which be-
comes the stable asymptotic value of the population density. When space
is taken into account, this stable state advances into unpopulated regions
as a propagating front (Fife, 1979; Okubo and Levin, 2001; Murray, 2002;
Méndez et al., 2014).

It was recognized some time ago (Britton, 1989; Sasaki, 1997) that, in
this situation in which the spatial dimension is considered, the competition
spatial range is an important parameter than can change qualitatively popu-
lation dynamics. In particular, population density can arrange into spatially
periodic patterns when competitive interactions occur within a finite region
around the individuals (Britton, 1989; Sasaki, 1997). This is in contrast
with the homogeneous configurations attained from the FKPP model that
assumes a strictly local competition. In these works the finite range of in-
teraction enters the description via an integral term, converting the FKPP
model into an integrodifferential equation, the nonlocal FKPP model. In this
mathematical framework, the problem of individuals or populations compet-
ing for resources in space becomes formally identical to the one of differ-
ent species (MacArthur and Levins, 1967), or even different phenotypes of
the same species (Roughgarden, 1979, p. 534), competing for resources dis-
tributed in the so-called niche space. This is typically modeled by variations
of the Lotka-Volterra competition equations (Volterra, 1926; Lotka, 1932).
The position of a species in niche space is defined as the set of traits rele-
vant to characterize resource utilization by this species. Proximity in such
niche space, usually assumed to be onedimensional, implies utilization of sim-
ilar resources which implies stronger competition. The question on whether
populations in space can remain homogeneously distributed in the presence
of competitive interactions or if rather they will break in clusters with a
typical spacing is then related to important issues in population and com-
munity ecology such as the principle of competitive exclusion or the question
on limiting similarity (MacArthur and Levins, 1967; May and MacArthur,
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1972; Abrams, 1983; Barabás et al., 2012; Leimar et al., 2013).
The Lotka-Volterra equations or the related nonlocal FKPP model have

been intensively analyzed in recent years (Fuentes et al., 2003; Scheffer and van Nes,
2006; Maruvka and Shnerb, 2006; Genieys et al., 2006; Pigolotti et al., 2007;
Leimar et al., 2008; Hernández-Garćıa et al., 2009; Berestycki et al., 2009;
Fort et al., 2009; Barabás et al., 2012; Leimar et al., 2013), from which a rea-
sonable understanding of the dynamics they represent begins to emerge. At
the same time, a different type of approach has been developed in which the
competing organisms are modeled as individual agents following a stochas-
tic dynamics (Hernández-Garćıa and López, 2004, 2005b; Birch and Young,
2006; Heinsalu et al., 2010, 2012, 2013). In this framework, the discrete na-
ture of individual organisms and fluctuations associated to the birth-death
processes are naturally taken into account. In addition, different types of spa-
tial motion of the organisms can be implemented as different kinds of random
walks. The dynamics of these individual-based models usually leads to re-
sults qualitatively and in some cases even quantitatively similar to the Lotka-
Volterra approach. Some differences however arise related to the fluctuat-
ing and discrete nature of the particle system (Hernández-Garćıa and López,
2004; López and Hernández-Garćıa, 2004; Hernández-Garćıa and López, 2005a).

In this Paper we review some of the basic results on the dynamics of these
stochastic and spatially extended discrete models of competing individuals.
More general approaches to competition in spatial settings can be found for
example in Klausmeier and Tilman (2002) or Amarasekare (2003). Our focus
here is on the interplay between the competition interactions and the random
motion of the individuals. Two types of random walks are considered: the
standard Gaussian or Brownian random walk, and a family of Lévy flights
characterized by a Lévy exponent µ which controls the probability of large
jumps (Metzler and Klafter, 2000; Klages et al., 2008; Méndez et al., 2014).
The Lévy type of motion has been pointed out by its relevance in efficient
search strategies (Benichou et al., 2011; James et al., 2011), and observed
in a number of experimental studies (Dieterich et al., 2008; Matthäus et al.,
2009, 2011; de Jager et al., 2011). We show that, under suitable conditions,
competitive interactions lead to clustering and pattern formation. On the
other hand, one of the main effects of the random motions of the individuals
is to decrease and diffuse away inhomogeneities. Then the occurrence or
not of population clusters will depend on the interplay between these two
opposing forces. More surprisingly, another effect of the type of motion is to
provide some competitive advantage to model organisms that are identical
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in any other aspect: we will see that survival competition is mediated by
clustering, so that forming stronger clusters, which depends on the random
walk characteristics, provides better chances for survival.

Reviewing results on the above two effects of mobility on competition is
the objective of this Paper. We try to put the different results into a common
framework. First we present numerical simulations of the stochastic models,
showing the main phenomenology and highlighting the basic mechanisms
by means of heuristic arguments. Then we analyze suitable Lotka-Volterra
integrodifferential models able to capture in a mean-field sense part of the
observed phenomenology, pointing out also the limitations of such approach.
For definiteness we concentrate in the situation of organisms competing for
resources in physical space. Most of the results have also an interpretation
in terms of species competition in niche space, but this will only be briefly
commented in the Conclusions section.

In addition to summarizing previous results, and clarifying previously pro-
posed heuristic arguments, we add here some new details on spatial structure
of the competing populations and its relationship with competitive advan-
tage, together with a study of extinction times of the different types of walk-
ers. The Paper is organized as follows: in Sect. 2 we describe the stochastic
model of interacting particles and in Sect. 3 we present the results of the
numerical simulations, showing pattern formation, and their interpretation
both in heuristic terms and with the help of a mean-field description. The
limitations of this last approach are also pointed out. In Sect. 4 we put to-
gether walkers with different types of motion, competing between them, and
focus on the phenomenon of competitive advantage by pattern formation.
Quantitative details on spatial structure and extinction times are presented
here, as well as a theoretical analysis in terms of a two-species mean-field
description. Finally, in Sect. 5 we summarize and discuss our conclusions.

2. A model of competing bugs

We represent the state at time t of a set of simple competing organisms, re-
producing asexually, by a set of N(t) point-like particles (they will also be re-
ferred as walkers, bugs, or individuals) at positions xi(t), i = 1, 2, ..., N(t) in a
twodimensional square domain of size L×L (see López and Hernández-Garćıa
(2004) for simulations of a onedimensional version). Periodic boundary con-
ditions will be assumed, and without loss of generality we take L = 1.
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The dynamics in the number of individuals includes birth and death pro-
cesses which are affected by the competitive interactions. Namely, the bug
labeled i reproduces and dies following Poisson processes of rates rib and rid,
respectively, given by:

rib = max
(

0, rb0 − αN i
R

)

rid = rd0 + βN i
R . (1)

rb0 and rd0 are the constant reproduction and death rates experienced by an
isolated bug. Competitive interactions are introduced in the terms containing
α and β: The reproduction rate of individual i decreases (we assume α > 0)
with the number of neighbors, N i

R, that are at a distance smaller than R
(R < L) from it. Analogously, death rate increases (β > 0) with the number
of neighbors. The newborns are placed at the same position as the parent
bug, introducing reproductive correlations in the system. The max function
in the first equation is needed to avoid rates (which are probabilities per unit
of time) to become negative.

After each particle number update with the birth-death dynamics, the
particles perform independent random walks. In the case of Brownian walks
all particles make jumps in random directions and with sizes l independently
sampled from the positive part of a Gaussian distribution of standard devi-
ation l̃ = (2κτ0)

1/2. This defines a diffusion coefficient κ. It is convenient to
perform the jumps after each particle-number updating, and τ0 is the mean
time between such events. The case of Lévy motion corresponds to the so-
called Lévy flights (Klages et al., 2008; Metzler and Klafter, 2000): length l
of the jumps is sampled from a Lévy-type probability density that for large l
decays as l̃−1(l/l̃)−µ−1. µ ∈ (0, 2) is the anomalous exponent controlling the
probability of large jumps. The variance of the displacement is divergent,
but an anomalous diffusion coefficient κµ can be defined from l̃, the scale
parameter: l̃ = (2κµτ0)

1/µ. When particles move freely without undergoing
the birth-death process, their spatial distribution develops fat tails at long
distances, which is an anomalous-diffusion behavior very different from the
Gaussian one (Klages et al., 2008; Metzler and Klafter, 2000). The smaller
µ the more anomalous the diffusion process. When µ > 2, however, the
variance of the displacements becomes finite and the central limit theorem
guarantees that Gaussian statistics applies at long times. We will see that
the effect of the anomalous diffusion is not so drastic in the presence of the
birth-death process or the finite interaction range R, since these quantities
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provide effective time and space cut-offs before the asymptotic behavior is
attained. Both κ and κµ will be denoted loosely as diffusivities. The dynam-
ics defined in this way incorporates interactions in the birth-death dynamics,
whereas the random walks of the individuals remain independent (except
at the moment of birth which fixes initial position). We are thus exploring
mechanisms which are different, and complementary, from the ones labeled
as active Brownian particles (Romanczuk et al., 2012), in which interactions
affect motion and not the particle number.

The processes specified above are implemented here through the Gillespie
algorithm as described in Heinsalu et al. (2012), where additional details on
the numerics can be found. Other implementations are possible, which lead
to similar results. For example Hernández-Garćıa and López (2004) used a
discrete-time approach nearly equivalent to the present one, except for very
large Poisson rates which become limited by the minimum time imposed in
the time discretization.

Parameter R is a central ingredient in our model, as it imposes a finite
range for the competitive interactions. In fact we will see that the periodicity
of the spatial patterns that are described below is directly related to R.
In this paper we will focus in the situation in which R is much smaller
than system size L (typically we take R = 0.1 as compared to L = 1) so
that boundary conditions become relatively irrelevant. On the other hand,
periodic-pattern formation requires R to be substantially larger than the
sizes of particle clusters (see Sect. 3.1). This will be achieved by considering
small values of the diffusivities introduced above.

3. Clustering of particles and pattern formation

3.1. The competitive clustering instability

In simulations of Brownian or Lévy bugs with a sufficiently large κ or κµ,
respectively, a nearly homogeneous distribution of particles is attained which
remains fluctuating but statistically steady. The expected density in such
situation can be estimated from the requirement of a balance between births
and deaths. From Eq. (1) and neglecting the max condition (which is correct
if we neglect fluctuations) this is achieved when N i

R ≈ (rb0 − rd0)/(α + β).
In a homogeneous situation the expected density ρ0 is the same everywhere,
and since N i

R counts the number of particles in a circle of area πR2, we have

ρ0 =
∆

γπR2
(2)
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where the notation

∆ ≡ rb0 − rd0 and γ ≡ α + β (3)

has been introduced. This estimation is correct for sufficiently large ∆. For
small ∆ the expected density is small and stochastic extinctions are likely
to occur from fluctuations in the particle number. In this case, in average,
the expected density becomes smaller than (2) and even vanishes well above
∆ = 0 (Hernández-Garćıa and López, 2004; López and Hernández-Garćıa,
2004; Hernández-Garćıa and López, 2005a).

But the most interesting dynamics occur when diffusivities are sufficiently
small. In this situation the homogeneous density breaks down and an ap-
proximately periodic arrangement of particle clusters arise, both for Brow-
nian as for Lévy walkers (see Fig. 1). The symmetry of the resulting
pattern is roughly hexagonal. Configurations such as the ones in Fig. 1
can be analyzed with different types of correlations and structure functions
(Hernández-Garćıa and López, 2004; López and Hernández-Garćıa, 2004; Birch and Young,
2006; Ramos et al., 2008; Heinsalu et al., 2010). We delay this type of analy-
sis until section 4, where it will be used to characterize competition between
different types of walkers. In the following we just comment on the main
aspects: Most of the parameters used in the three simulations illustrated in
Fig. 1 are equal, the only differences being the use of Brownian (panels (a)
and (c)) or Lévy (panel (b)) jumps, and the presence of competition only in
the birth rate (panels (a) and (b)) or only in the death rate (panel (c)). In
the three cases the number of particles is similar (fluctuating close to 2600) as
well as the number of well-formed clusters (63, 68 and 62 for panels (a), (b)
and (c), respectively). The main difference is in the shape of the clusters and
in their ordering: In the Lévy case, because of the larger probability of long
jumps, there are much more solitary particles (Heinsalu et al., 2010, 2012)
that jump into the regions between clusters, remaining there for a short time
before dying or jumping again. In the Gaussian case clusters are much more
compact. When competition affects only the death rate (panel (c)) clusters
are narrower and are arranged in a more disordered way. The reasons for
this will be commented at the end of subsection 3.3.

One can understand the instability of the homogeneous distribution by
some qualitative arguments that clearly indicate that it is a consequence of
the competitive interactions: Let us consider the bugs initially distributed
homogeneously in space with the density ρ0, so that deaths and births are
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balanced. When there are fluctuations or perturbations that enhance the
density at points separated by a distance larger than R but smaller than 2R,
death will become more probable than reproduction in the area in between
these density maxima. This is so (see Fig. 2) because of Eqs. (1) and of
the fact that in this zone an individual experiences the competition with the
organisms from at least two of the density maxima, whereas in each density
maximum the competition takes place only between the individuals in the
same maximum (other maxima are simply out of the interaction range R).
As a consequence, the density will decrease in between the density maxima.
This in turn releases competitive pressure on the maxima, which will tend
to grow, and then start to form periodically located clusters (at a distance
fR, with 1 < f < 2) and close a positive feedback loop that will finally
eliminate all organisms in these death zones between the clusters. The only
mechanism that can stop this process is particle diffusion, if it occurs fast
enough to redistribute the bugs before the instability concentrates them.

The above qualitative argument clearly identifies the competitive interac-
tions as responsible for the pattern forming instability. However it requires,
besides small diffusivities to guarantee that clusters do not extend into the
death zones, that there is a sufficiently sharp distinction between the inte-
rior and the exterior of the competition area. The precise meaning of these
requirements will be clarified in the next subsection. We close this one by
noticing that the number of particles in the system in which clustering oc-
curs is higher than what would be allowed by the homogeneous distribution.
To see this we recall the previous calculation of ρ0 in which N i

R bugs are
distributed in an area πR2. Now (Fig. 1) the same number of bugs is con-
centrated in small clusters in the center of regions which are approximately
hexagons of apothem fR/2. Since the area of such hexagons is much smaller
than the area of the circle of radius R (this is so as far as f < 2.199) the
mean density is higher and we have more particles in the system. The hexag-
onal shape is not necessary for the argument; it is enough that clusters are
associated to regions of width fR, with f < 2, instead of circles of diame-
ter 2R. By clustering together and leaving in between sufficient space free
from competitors (i.e. leaving empty the death zones), the bugs experience
a smaller effective competition and can survive in larger numbers.

3.2. Mean-field approach

Let us analyze a deterministic description of the system, which is enough
to formalize the heuristic arguments given above. Denoting the mean local
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density of walkers by ρ(x, t), different mathematical arguments (Hernández-Garćıa and López,
2004; Birch and Young, 2006) can be put forward to justify that, if statisti-
cal fluctuations are neglected, the following dynamics approximates the mean
evolution of the density:

∂ρ(x, t)

∂t
= M(x, t)ρ(x, t) +Dρ(x, t) . (4)

Here, D stands for the diffusion-like operator representing the effect of mo-
bility on the particle density. For Brownian walkers, it is the simple diffusion
operator D = κ∇2, whereas in the Lévy case D = κµ∇

µ involves the frac-
tional derivative of order µ (Metzler and Klafter, 2000; Klages et al., 2008;
Méndez et al., 2014). The quantity M(x, t) is

M(x, t) ≡ ∆−Gx ∗ ρ , (5)

which simply the difference between birth and death rates from Eq. (1).
∆, defined in (3), is a net linear growth rate. The symbol Gx∗ denotes the
convolution product with a kernel G(x), i.e.,

Gx ∗ f ≡

∫

dyG(x− y)f(y) , (6)

where the integration is over all the system domain. In our case, in which
interactions enter the dynamics via Eq. (1) which counts the number of or-
ganisms in a two-dimensional neighborhood of radius R, the kernel G(x)
is:

G(x) =

{

γ , if |x| < R ,

0 , elsewhere ,
(7)

being γ the competition slope defined in (3). The above notation is gen-
eral enough to be useful in cases of arbitrary dimensionality and when the
interaction differs from (7), for example if it is weighted with the distance
(Birch and Young, 2006; Pigolotti et al., 2007; Hernández-Garćıa et al., 2009;
Pigolotti et al., 2010).

The type of description given by Eq. (4) turns out to be accurate where
the densities are large enough to neglect fluctuations. We also mention that
the use of the operators ∇2 and ∇µ defining D is accurate only at sufficiently
large time and spatial scales. Numerical simulation of Eq. (4) for low diffusiv-
ities correctly exhibits the pattern forming instability leading to an hexagonal
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pattern with a periodicity similar to the one observed in the particle sim-
ulations (Hernández-Garćıa and López, 2004; López and Hernández-Garćıa,
2004; López and Hernández-Garćıa, 2007a).

We now use this continuous description to understand analytically the
pattern forming instability. To do so, we introduce some notation: we call Ĝk

the Fourier transform of G(x), i.e., Ĝk =
∫

dx eik·xG(x), and Ĝ0 ≡ Ĝk=0 =
∫

dxG(x). For our two-dimensional kernel (7) these functions become:

Ĝk = 2γπR2J1(kR)

kR

Ĝ0 = γπR2 , (8)

with J1 being the first-order Bessel function and k = |k|. Also, the action of
the operator D in the Fourier representation involves simple multiplications:
D̂(k) = −κk2 in the Brownian case or D̂(k) = −κµk

µ under Lévy motions.
The spatially homogeneous steady solution of Eq. (4) is precisely ρ0 in

(2), which is independent of the particular form of the operator D. Now
we perturb ρ0 with harmonic functions and look at the growth rates of such
perturbations to assess stability:

ρ(x, t) = ρ0 + ǫ eλ(k)teik·x . (9)

Linearizing in the small perturbations ǫ one finds

λ(k) = D̂(k)−∆
Ĝk

Ĝ0

. (10)

Since D̂(k) < 0, we see that λ(k) will remain negative, and then ρ0 will
remain stable, when Ĝk is positive ∀ k. When Ĝk is negative for some
k, however, the second term can destabilize the homogeneous solution if
the mobility term characterized by D̂(k) is not sufficiently negative at these
wavenumbers. The change from negative to positive sign in λ(k) will occur
first for the wavenumber kc = |kc| for which λ(k) is maximum. The insta-
bility will develop in a periodic pattern which, at least close enough to the
instability (Cross and Hohenberg, 1993), will have a periodicity δ determined
by the growing wavenumber, δ = 2π/kc. Equation (10) clearly expresses the
first effect of particle mobility characterized by D̂(k) on the competitive dy-
namics: D̂(kc) < 0 will stabilize the instability produced by the negative
values of ∆Ĝk/Ĝ0 at |k| ≈ kc until they are too large. From the expres-
sions D̂(kc) = −κk2

c or −κµk
µ
c we can identify these quantities as the rates

10



of particle-escape out of the periodic structures of wavenumber kc: increased
diffusivities enhance the flux of particles from the clusters towards the death
zones, thus working against the pattern formation process (and reducing the
mean density).

The qualitative requirement discussed in subsection 3.1 of a sufficiently

sharp distinction between the interior and the exterior of the competition

area becomes now formalized: the sharp distinction occurs when the Fourier
transform Ĝk of the kernel takes negative values. For example, for kernels of
the form G(x) ∝ exp(−|x/σ|p), the Fourier transform has negative compo-
nents (Bochner, 1937), and then they are sufficiently sharp to produce the
competitive instability, in the platykurtic situation p > 2 (note that the flat-
top kernel in (7) corresponds to p → ∞). Under kernels with p ≤ 2 (which
include the Gaussian and the exponential kernels) Ĝk is positive and then
the homogeneous distribution will remain stable.

We now return to the specific competition kernel given by (7) and (8).
We introduce dimensionless versions of the wavenumber, q ≡ kR, and of
the growth rate, Λ(q) ≡ Rµλ(k)/κµ for the Lévy case. The corresponding
expressions in the Gaussian case are obtained by using µ = 2 and replacing
κ2 by κ. Equation (10) then reads

Λ(q) = −qµ − ν
J1(q)

q
, (11)

where the dimensionless combination ν ≡ 2Rµ∆/κµ has been introduced.
We plot Eq. (11) in Fig. 3 for the Gaussian case (formally obtained by
substituting µ = 2) and for a Lévy case with µ = 1. We have that pattern
formation occurs when ν > νc, which can be achieved by increasing R or ∆,
or reducing the diffusivity κµ.

The critical wavenumber kc = qc/R for which instability first occurs can
be found by solving simultaneously the equations Λ(qc) = 0 and Λ′(qc) = 0,
which implement the conditions of change of sign in the growth rate and
of maximum of the growth rate, respectively. Using these conditions and
properties of derivatives of Bessel functions one obtains the critical value of
ν: νc = −qµ+1

c /J1(qc) and the equation for the critical wavenumber:

qc
J2(qc)

J1(qc)
= −µ . (12)

Numerical solution of this equation gives qc = qc(µ) (= kcR) from which the
expected periodicity of the pattern is δ = 2πR/qc. Table 1 presents these
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quantities for several values of µ and for the Gaussian case. In agreement
with the previous heuristic discussion, we see that pattern periodicity (last
column in the Table) is always of the form δ = fR, with 1 < f < 2.

3.3. Limitations of the deterministic description

The predicted periodicity is in good agreement with numerical simulations
(Hernández-Garćıa and López, 2004; Heinsalu et al., 2010), which confirms
the relevance of the nonlocal KPPP equation (4) to describe the particle
system. There is only a weak dependence of the wavenumber on diffusivities
which is not predicted by the mean-field approach. But there are other
features that are not captured by this deterministic description:

First, as already commented, the homogeneous solution ρ0 in (2) overes-
timates the mean density when ∆ is small. Because of number fluctuations,
the particle system becomes extinct when ∆ is still positive. This transition
is of the Directed Percolation type (López et al., 2007b), qualitatively differ-
ent from the mean-field transition to the extinct state predicted by Eq. (4)
at ∆ = 0, but that can be recovered by incorporating multiplicative noise
terms to it (Ramos et al., 2008).

Second, even if pattern periodicity is correctly described by (4), clus-
ter width is not. Extreme discrepancy occurs when R grows to be of the
order of the system size, in which case solutions of (4) give a patch occu-
pying the whole system, whereas the particles in the discrete model remain
aggregated in a single small cluster (Hernández-Garćıa and López, 2005b;
Heinsalu et al., 2012). In fact cluster width, as in Young et al. (2001), is de-
termined by reproductive correlations: it is essentially (Hernández-Garćıa and López,
2005a; Heinsalu et al., 2012) the distance (2κτd)

1/2 or (2κµτd)
1/µ traveled dur-

ing a particle lifetime τd ≈ (rid)
−1 (see Hernández-Garćıa and López (2005b)

for a refinement that takes into account the lifetime of the lineage of a par-
ticle). Olla (2012) discuses how different mobility types affect reproductive
correlations in noninteracting particle systems.

As a third deficiency of the deterministic modeling we point out that,
although for the parameter values used in panels (a) and (c) of Fig. 1 the
corresponding instances of Eq. (4) are identical, particle configurations are
indeed quite different. As noted before, the spacing between clusters is very
similar, but clusters in (c) are narrower and are arranged in a more irregular
way. Both differences have the same origin: In Eq. (4) only the difference
between the birth and death rates enter. But for the stochastic model the
absolute value of the rates is also relevant. For example, if we balance the
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birth and death rates (neglecting the diffusivities) to obtain steady values
rstb and rstd , we find rstb = rstd = rd0 + β∆/(α + β), which is an increasing
function of β. Thus, giving increasing weight to competition in the death
term while keeping other parameters such as ∆ or γ unchanged increases the
value of the rates in steady state. The smaller width of the clusters in panel
(c) of Fig. 1 with respect to the ones in panel (a) is a consequence of the
smaller lifetime of the bugs because of the increased steady death rate. Also,
the rate parameter in a Poisson process not only fixes the mean number of
events per unit of time, but also its variance. Then higher rates produce more
fluctuating processes (Heinsalu et al., 2012), even if the mean value of the
difference between birth and death rates remains constant. This explains the
larger irregularity of the pattern in panel (c) of Fig. 1 with respect to panel
(a) which has β = 0 and then smaller steady value of the rates. This effect,
as others linked to fluctuations, is absent from Eq. (4). Another possible
consequence of fluctuations that we have not studied in detail could be the
appearance of quasipatterns excited by noise (Butler and Goldenfeld, 2011)
even in parameter regions in which the deterministic description predicts a
homogeneous state.

4. Clustering as a competitive advantage

4.1. Two-species competition

In Sect. 3 we have seen how competitive interactions with some features
lead to particle clustering and pattern formation, and how particle mobility
works against this and shapes the pattern characteristics. In this section we
present a different phenomenon: competition advantage provided by clus-
tering. We consider competition between two types of bugs (we can think
of them as pertaining to two species), identical in every aspect except in
the type of motion. We will see that despite having the same birth and
death rates, and identical direct competition properties, the different clus-
tering characteristics associated to the different type of random walk provide
a competitive advantage to one of the species (roughly the one forming the
narrowest clusters). When competing together one of the species survives
and the other gets extinct.

The model set-up is as before, except that initially half of the individuals
are Brownian random walkers characterized by the diffusion coefficient κ and
the other half are Lévy random walkers characterized by the exponent µ and
the anomalous diffusion coefficient κµ. Birth and death rates are the same
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as before for the two species, Eq. (1), with N i
R counting all neighbors (i.e.,

of any type) of bug i. When reproducing, offspring is of the same type as
the parent walker.

When κ and κµ are sufficiently large (Heinsalu et al., 2013), walkers ap-
pear to be distributed in an unstructured way, as when a single species is
present. Local fluctuations occur around an homogeneous mean without a
long-lasting pattern forming. The population numbers of the two types of
walkers widely fluctuate in antiphase, whereas the total number weakly fluc-
tuates close to a well-defined value. In this situation in which both species
are highly diffusive, the two types of walkers become well mixed, so that
there is no difference in the neighborhood seen by the individuals of one or
the other type. Thus, effectively, the two species become equivalent. The
observed neutral fluctuations that conserve the total number were expected
from the stochasticity of the reproduction-death process and the equivalence
between the species. After some time, however, neutral fluctuations can cre-
ate diffuse patches dominated by a single species, and eventually a particular
neutral fluctuation could eliminate all individuals of a given type, after which
only the other species will remain in the system. The winner is not a better
competitor, it is just determined by chance.

The situation becomes different when κ or κµ decrease (Heinsalu et al.,
2013). When one of these quantities becomes sufficiently small the corre-
sponding species begins to form clusters, in a manner similar to the one
discussed in Sect. 3. At this moment the population of the other species
begins to decrease until complete extinction. The possibility to develop clus-
ters, determined by the type of motion, has given a competitive advantage
to one of the species. When the simulation is started with the two types of
bugs randomly mixed and the values of κ and κµ are such that both species
form periodic patterns when alone, then clusters begin to form and the bugs
compete, until typically only one of the species survives. The observed out-
come at some particular values of the birth/death parameters is summarized
in Fig. 4. Variables in the axes are |D̂µ(kL)| = κµk

µ
L (with µ = 1) and

|D̂2(kB)| = κk2
B. kB is the critical wavenumber kc for which instability first

occur in the Brownian walker case, whereas kL is the critical kc in the Lévy
case. Both quantities can be read-off from Table 1. This scaling of the axes is
suggested by the analytical approach of subsection 4.4. For now it is enough
to keep in mind that these quantities are proportional to the diffusivities κµ

(with µ = 1) and κ. We see that when one of the diffusivities is sufficiently
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small, the corresponding species wins. There is also a small region in which
coexistence persists during all the long simulation times. At variance with
the case of large diffusivities, here the coexisting species are not mixed but
occupy segregated clusters, and both particle numbers, not just their sum,
fluctuate around well-defined means. There are also some transition regions
where the outcome depends on the initial condition or the particular random
realization. When approaching these transitions zones, the extinction times
of the loosing species grow and finally diverge, signaling a change of winner.
This will be quantified in subsection 4.3.

By comparing visually the type of patterns formed by each of the two
species when they are alone in the system one recognizes that, roughly, the
organisms forming more concentrated and populated clusters (which is asso-
ciated to lower diffusivities) are more successful when put into competition
with the other species. We quantify this observation in subsection 4.2 by
comparing spatial patterns in terms of radial distribution functions. Before
that we mention that the general trends of winner and loosing species can be
understood from the heuristic arguments set up in Sect. 3.1: the existence
of death zones in between particle groups would develop the same clustering
instability as before for both species, but this is opposed by the flux of parti-
cles out of the clusters because of their random walks. The species for which
this flux is higher, which manifest in wider clusters or in its absence, will
visit more frequently the death zones and this gives them a clear competi-
tive disadvantage with respect to the ones that remain in well concentrated
clusters. The next subsection will quantify this relationship between cluster
compactness and competition outcome and, after subsection 4.3 devoted to
extinction times, we will formalize these intuitive ideas in 4.4 to provide some
quantitative criterion about competition outcome.

4.2. Spatial structures in single-species simulations

To understand the conditions favoring the surviving of one or the other
species, we return in this subsection to the situation in which only one species
is present in the system and investigate their radial distribution function g(r).
It is defined by using the formula dn = (N/L2)g(r)2πrdr which involves the
number of particles dn at a distance between r and r + dr from a specific
one, and then averaging over all these specific particles and over long times.
N is the total number of particles in the simulation domain of area L2. g(r)
describes (Dieckmann et al., 2001) how the density varies with the distance
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from a given particle with respect to the uniform distribution (characterized
by g(r) = 1).

The value of g(r → 0) gives an idea of the number of close neighbors
surrounding any individual, i.e., it indicates the increase in local density, in-
duced by the presence of one of the organisms, with respect to the uniform
density. The presence of the first peak of g(r) at r 6= 0 indicates the forma-
tion of a periodic pattern with periodicity r. The value of g(r) in between
the first two peaks measures the density between clusters compared to the
uniform distribution. The higher and narrower the peak at r → 0, the more
concentrated are the organisms in the clusters.

In Fig. 5 we depict g(r) for the two types of walkers and for different values
of κ and κµ. The three chosen values of κµ are intended to represent the three
qualitatively different situations seen in Fig. 4 for the case of competing walk-
ers: for κµ = 4× 10−4, which corresponds in the figure to |D̂µ(kL)| = 0.0198,

Lévy walkers always win; for κµ = 4 × 10−2 (|D̂µ(kL)| = 1.98) Brownian

walkers win; for κµ = 4×10−3 (|D̂µ(kL)| = 0.198), depending on the value of
κ, there is either coexistence of the two species or Lévy or Brownian walkers
win the competition.

The value of g(r → 0) for the Lévy walkers with the smallest value of κµ

or |D̂µ(kL)| plotted in Fig. 5 is higher than for Brownian walkers with any
of the values of κ considered. This means that Lévy clusters are relatively
more populated than Brownian ones in this range of parameters (see also
Heinsalu et al. (2010, 2012)). Instead, for the largest value of κµ or |D̂µ(kL)|
there is no clustering of Lévy walkers (g(r) ≈ 1) and the value of g(r → 0)
is always larger for the systems of Brownian walkers with the studied values
of κ. In the first case the Lévy walkers win, whereas in the second case the
Brownian walkers win, suggesting that in the two-species model the survival
is favored by the stronger clustering.

The situation is a bit more complex for the intermediate value κµ = 4×

10−3 (|D̂µ(kL)| = 0.198). As can be seen from the radial distribution function
(Fig. 5), Lévy walkers do not form a clear periodic structure, although there is
still weak local clustering as indicated by g(r → 0) > 1. But clustering is even
weaker for the Brownian walkers with κ = 10−4 (|D̂2(kB)| = 0.23). Because
the value of g(r → 0) is sufficiently higher in the system of Lévy walkers, the
latter ones win the competition. When reducing the Gaussian diffusivity to
κ = 6×10−5 (|D̂2(kB)| = 0.137) the difference of g(r → 0) between the Lévy
and Brownian systems is rather small and the winner of the competition is
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a random event. Reducing further κ to κ = 4 × 10−5 (|D̂2(kB)| = 0.091)
the values of g(r → 0) are approximately equal in the Lévy and Brownian
systems; in this case, however, a clearer cluster periodicity in the Brownian
case (larger value of the the first peak of g(r) at r 6= 0) seems to give them
advantage over the Lévy ones.

Following this observation that competition success is attained by the
motion leading to the strongest and clearest clustering, one would guess that
reducing further κ to κ = 4 × 10−6 (|D̂2(kB)| = 0.0091) with the Lévy
diffusivity still at κµ = 4× 10−3 the Brownian walkers would win. However,
as indicated by Fig. 4, this is not the case. Instead, coexistence occurs. This
situation will be commented at the end of next subsection.

4.3. Extinction times

We return to the situation in which both species are initially present in
the system and investigate now the average time τ that it takes for one of the
two competing species to go extinct (known as fixation time in the population
genetics jargon). Notice that, since we study a finite system, all species will
become extinct due to large fluctuations at sufficiently long times. However,
in the case of systems consisting of at least some hundreds of individuals this
happens only after very long time scales. In our simulations we have never
observed such complete extinction and we report only the fixation time for
the species dying out first. Figure 6 displays the fixation time, τ , as a function
of the diffusion coefficient, κ, of the Brownian walkers for different values of
the anomalous diffusion coefficient, κµ, of the Lévy walkers.

For κµ = 4×10−4, when the Lévy walkers always win (|D̂µ(kL)| = 0.0198,
see Fig. 4), the fixation time, τ , decreases when increasing κ, i.e., the Brow-
nian walkers die out faster for larger diffusion coefficient. Namely, larger κ
means weaker clustering of the Brownian bugs, thus confirming the observa-
tion made in subsection 4.2 of decreased stability for weaker clustering.

In the largest value κµ = 4 × 10−2, which corresponds to the situation

when Brownian walkers win (|D̂µ(kL)| = 1.98, see Fig. 4), the fixation time, τ ,
increases for larger values of κ. The stronger clustering of Brownian walkers
leads to the extinction of Lévy ones which form essentially no clusters. The
extinction of the Lévy walkers is delayed by weaker clustering of Brownian
walkers, i.e., by larger κ, which makes the two species more similar.

For the intermediate value κµ = 4 × 10−3 (|D̂µ(kL)| = 0.198), when the
outcome of the competition depends on the value of κ , the general behavior
of τ(κ) is the same as for κµ = 4 × 10−4, i.e., for larger values of κ the
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extinction time is smaller, increasing rapidly when decreasing κ. The local
maximum in τ(κ) is associated with the transition from the regime where
Lévy walkers win due to their stronger clustering to the regime where the
Brownian walkers win due to their stronger clustering; for this point it is a
random event which of the two species, characterized by a similar capability
of clustering, wins the competition.

As noted at the end of subsection 4.2, for the intermediate values of
κµ (e.g., for κµ = 4 × 10−3) such that the Lévy walkers still form clusters
but not too strong ones, and diffusion coefficient κ of the Brownian walkers
becomes very small, the Lévy walkers do not die out but coexistence of
the two species occurs, i.e., during the accessible simulation time we do not
observe the extinction of neither of the competing species (τ → ∞ for κ →
0). In this situation, what happens is that the Brownian walkers form very
strong clusters that the Lévy walkers are not capable to invade (because
its larger flux out brings them to the death zones). At the same time, due
to the extremely low diffusion and the high death rate in the inter-clusters
space, the Brownian walkers are not capable to travel away and colonize the
territories that have been occupied by the Lévy walkers during the initial
cluster formation period due to the fluctuations.

4.4. Two-species mean-field description

We now analyze a mean-field deterministic description of the system, in
order to understand the relative stability of Lévy versus Brownian bugs under
competition. Denoting the local density of Brownian walkers by ρB(x, t) and
by ρL(x, t) the corresponding to the Lévy ones, the dynamics (4) becomes
now:

∂ρB(x, t)

∂t
= M(x, t)ρB(x, t) +D2ρB(x, t) ,

∂ρL(x, t)

∂t
= M(x, t)ρL(x, t) +DµρL(x, t) ,

(13)

where the difference between birth and death rates is now M(x, t) ≡ ∆ −
Gx∗(ρB + ρL). The notationD2 has been introduced to specify the Brownian
diffusion operator D2 ≡ κ∇2 and analogously Dµ ≡ κµ∇

µ.
Interaction of the two competing species via Eq. (13) is clearly a fully non-

linear problem that can not be addressed analytically in a complete manner.
But we will see that a linear analysis around the homogeneous states gives
some insight into the process. We first look for the spatially homogeneous
solutions of Eqs. (13). In this case the spatial derivatives vanish and there is
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no difference between the dynamics of the two species. There exists a family
of steady homogeneous solutions satisfying the condition ρB + ρL = ∆/Ĝ0.
Thus, we can write the members of such a family in terms of a parameter
a ∈ [−∆/(2Ĝ0),∆/(2Ĝ0)]:

ρ0B =
∆

2Ĝ0

+ a , ρ0L =
∆

2Ĝ0

− a . (14)

The upper boundary of this family (a = ∆/(2Ĝ0)) corresponds to the pure
Brownian population, whereas the lower boundary (a = −∆/(2Ĝ0)) corre-
sponds to the pure Lévy population. Intermediate values of a parameterize
different degrees of homogeneous coexistence.

To demonstrate that all this homogeneous family is stable for sufficiently
high values of the diffusivities κ and κµ we perturb it with harmonic functions
and calculate the growth rates of such perturbations:

ρB(x, t) = ρ0B + δB eλteik·x ,

ρL(x, t) = ρ0L + δL e
λteik·x .

Linearizing with respect to the small perturbations δB and δL, one gets a
linear system for which the solvability conditions give a quadratic equation
for λ, with two solutions for each value of the set of parameters and of k:

λ± = −
1

2
A±

1

2

√

A2 − 4(BC −D) , (15)

with

A = ∆
Ĝk

Ĝ0

+ |D̂2(k)|+ |D̂µ(k)| , (16)

B = Ĝk

(

∆

2Ĝ0

+ a

)

+ |D̂2(k)| , (17)

C = Ĝk

(

∆

2Ĝ0

− a

)

+ |D̂µ(k)| , (18)

D = Ĝ2
k

[

(

∆

2Ĝ0

)2

− a2

]

. (19)

We use the absolute value for |D̂2(k)| = −D̂2(k) = κk2 and |D̂µ(k)| =

−D̂µ(k) = κµk
µ to stress that these quantities are positive. For sufficiently
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large diffusivities κ and κµ, |D̂2(k)| and |D̂µ(k)| are large and the values of λ+

and λ− are negative (except for the zero mode λ+(k = 0) = 0), meaning that
any perturbation applied to a member of the family of homogeneous solutions
decays (except the neutral perturbations associated to the zero mode, which
transform one of the homogeneous solutions into another one), and thus any
of the homogeneous solutions is stable. No persistent pattern can appear
in the system for large values of κ and κµ. At each instant the system is
in one of the homogeneous states described by Eqs. (14). In the presence
of noise caused by the random birth-death process (absent from Eqs. (13))
continuous fluctuations in the direction of the neutral mode (equivalent to
fluctuations in a), will occur transforming one of the homogeneous states into
another one.

When decreasing κ or κµ (D̂2(k) or D̂µ(k) approaching zero) the largest
of the growth rates in Eq. (15) becomes positive at some values of k. This
identifies a pattern-forming instability leading to periodic modulations of the
densities with a characteristic periodicity given by 2π/k, similarly to the cases
of a single species described in Sect. 3. Some information on the character
of the instability evolution can be gained by focussing in its linear growth
phase. In particular one can ask what is the homogeneous combination of
Lévy and Brownian bugs that becomes unstable first when decreasing the
values of κ and κµ. The instability condition occurring first is λ+ > 0, which
from Eq. (15) implies BC < D. By using Eqs. (16)-(19), this happens if

|D̂2(k)D̂µ(k)|+
∆Ĝk

2Ĝ0

(|D̂µ(k)|+ |D̂2(k)|)+aĜk(|D̂µ(k)|−|D̂2(k)|) < 0 . (20)

When decreasing diffusivities, the instability first occurs for values of k lead-
ing to negative values of Ĝk and for (|D̂µ(k)|−|D̂2(k)|) a > 0. Due to the lin-
ear dependence in a, the earliest instability appears for the values of a at the
extremes of its definition range, i.e., for a = −∆/(2Ĝ0) if |D̂2(k)| > |D̂µ(k)|

and for a = ∆/(2Ĝ0) if |D̂2(k)| < |D̂µ(k)|. This means that the homoge-
nous configurations that first become unstable are those populated by solely
Lévy (when |D̂2(k)| > |D̂µ(k)|) or solely Brownian (when |D̂2(k)| < |D̂µ(k)|)
walkers. The unstable mode associated to these instabilities involves only the
Lévy or the Brownian population, respectively, so that the pattern that will
grow from the unstable state will contain only that species. Once clusters ap-
pear in some part of the domain, arguments similar to the ones presented in
Sec. 3 indicate that they will dominate the whole system. The value of k to be
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used in the above expressions is the critical one, kc, at which the instability
condition (20) is first achieved, i.e., k = kB ≈ 4.77901/R for the Brown-
ian homogeneous background (see Table 1) should be used in |D̂2(k)|, and
k = kL, the critical wavenumber kc for the Lévy homogeneous background,
should be used in |D̂µ(k)|. These critical wavenumbers can be read-off from
Table 1 at different values of µ.

Thus, the picture emerging from the mean-field description is the fol-
lowing: at large diffusion coefficients κ and κµ the two types of organisms
are essentially the same and coexistence occurs (until a neutral fluctuation
eliminates irreversibly one of the two species). When decreasing κ and/or κµ,
mixing will be not so good anymore and different regions of the system may be
occupied by different proportions of bug densities that satisfy the condition
ρB + ρL = ∆/Ĝ0. By further decreasing the diffusion coefficients (or increas-
ing ∆ or R), some of these regions will encounter an instability. Which is the
first one to occur depends on the sign of |D̂2(kB)| − |D̂µ(kL)| = κk2

B − κµk
µ
L;

it is either a pure Lévy or a pure Brownian instability, leading to a periodic
pattern with periodicity fixed by kB or kL, respectively.

As described before, Fig. 4 shows the outcomes of the competition pro-
cess, plotted in a diagram with axes |D̂µ(kL)| = κµk

µ
L (with µ = 1) and

|D̂2(kB)| = κk2. The above arguments predict that the transition occurs
across the main diagonal, which is sketched in the upper part of the plot.
The prediction is not quantitatively accurate, but it follows qualitatively
the trend of the numerically observed transition, with the proper winning
state above and below it. Although rather crude, the above linear instabil-
ity arguments have been adequate to describe qualitatively the outcome of
the competition process. More importantly, they identify the fluxes or es-
cape rates out of the clusters, |D̂µ(kL)| and |D̂2(kB)|, correlated with cluster
width, as the important parameters quantifying the competitive advantage
of one species over the other, in agreement with the qualitative arguments
at the end of subsection 4.1.

At this point it is clear that all the above arguments can be repeated in
the case in which we have two types of Brownian random walkers differing
in their diffusion coefficient κ, or two species of Léevy walkers characterized
by different µ or κµ. In all these situations the prediction will be that the

species with the smallest value of the |D̂(kc)|, with kc the corresponding
critical wavenumber, has a competitive advantage.
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4.5. Limitations of the deterministic description of the two-species system

The predictions of the previous section for the competition outcome are
only qualitatively correct, as seen is Fig. 4, but this is probably more a
limitation of the linear approach used than a failure of the mean-field de-
scription. More important drawbacks arise from the lack of fluctuations in
Eqs. (13). As in the single-species case, this would be relevant to describe
the full extinction of the whole population when ∆ approaches zero. Also,
all the members of the homogeneous family in Eq. (14) are predicted to
be steady states, but the deterministic treatment already identifies correctly
the change in the parameter a as a neutral mode, that will fluctuate without
restoring force if noise from the stochastic birth-death process is taken into
account.

Competition success in our system is associated to the pattern formation
process and this has been clearly traced back (Sects. 3.1 and 3.2) to the
existence of death zones arising from the existence of a finite interaction range
R. This is well described within the deterministic approach. However, when
interaction range decreases so that competitive interactions become purely
local, subtle interplays between competition, diffusion and fluctuations can
lead to situations qualitatively different. For example Pigolotti and Benzi
(2014) show that under local interactions faster mobility gives competitive
advantage, a mechanism not contained in the corresponding local mean-field
description.

Perhaps the most relevant deficiency of the deterministic mean-field de-
scription is that it does not capture the situation when the two species co-
exist segregated in space. To describe this situation, a careful consideration
of front propagation and mutual invasion processes is needed. But it can
not be based only in the continuous Eqs. (13) because such study needs to
take into account, in addition to the pinning of the fronts by the periodic
structures, the discrete and fluctuating nature of the system. For example, a
continuous deterministic description of reaction-diffusion processes with Lévy
diffusion is known to predict an infinite or accelerating speed of propagat-
ing fronts (del Castillo-Negrete et al., 2003). But this speed becomes finite
in the corresponding interacting particle model (Brockmann and Hufnagel,
2007) because of the discrete nature of the particles.
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5. Conclusions and outlook

In this paper we have summarized results on the dynamics of a class of
stochastic models of competing organisms, in which the individuals undergo
birth and death processes modulated by competitive interactions with their
neighbors, while simultaneously performing random walks of different types
(Gaussian Brownian motion and Lévy flights). We have focused on the way
interactions and random motions affect each other leading to spatial insta-
bilities and extinctions.

Under appropriate conditions, competition produces particle clustering
and the formation of periodic patterns. Periodicity is of the order of the in-
teraction range R, so that it disappears in purely local interactions (R → 0).
This process is affected by particle motion in two ways: First random walks
tend to disperse the clusters and homogenize the system, thus delaying the
pattern forming instability. Second, when different types or species of ran-
dom walkers are allowed to compete between them, bugs that form narrower
and stronger clusters get a competitive advantage, in the sense that they
outcompete the others and bring them to extinction.

We have characterized numerically instabilities, patterns and transitions,
and interpreted them with heuristic arguments and with integrodifferential
mean-field models that neglect fluctuations. In general these continuous mod-
els provide a good description of the individual-based dynamics, in particular
the existence of the pattern forming instabilities and its wavenumber. We
have pointed out some deficiencies, however, such as incorrect cluster width
or coexistence outcomes. These are mainly associated with the fact that
arbitrarily small densities are allowed in the mean-field description, whereas
in the particle system the minimum number of particles in a region is either
one or zero, with no possible value in between.

The models reviewed here are extremely simplistic, and they can not be
directly compared with realistic biological settings. Predation, facilitation,
parasitism, and many other types of interaction occur besides competition
in real ecosystems, which would need to be taken into account. Our model-
ing strategy should be taken as a mathematical tool that allows a detailed
understanding of basic features of competitive interactions in combination
with random motions. In particular it has clearly identified the relevance
of death zones where enhanced competition occurs, and the importance of
the escape rates or fluxes out of the clusters, quantified by quantities such
as D̂(kc), in shaping competitive efficiency. Despite the theoretical charac-
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ter of the models we want to mention here that nonlocal competition pro-
cesses have been widely discussed in the context of species competition in
niche space (Barabás et al., 2012; Leimar et al., 2013) and that some obser-
vations of phenotypic clustering are in general agreement with the pattern
forming instability described here (Holling, 1992; Scheffer and van Nes, 2006;
Segura et al., 2013). Also, plant competition in semiarid environments pro-
vides a framework in which pattern formation by the competitive instability
has been proposed (Mart́ınez-Garćıa et al., 2013). Here individual plants are
not random walkers, but seed dispersion can be described in a similar way.

Even when focusing exclusively in the competition interaction, some words
should be said on the validity of the fundamental ingredient in the particle
model: the basic rates in Eq. (1). In general, when modeling competition for
resources, resource dynamics should be explicitly represented together with
the dynamics of the consumer population (Schoener, 1974; Zald́ıvar et al.,
2009; Ryabov and Blasius, 2011). Effective descriptions such as Eq. (1)
which consider only the consumers arise in the limit in which resource dy-
namics is sufficiently fast (Schoener, 1974; Hernández-Garćıa et al., 2009).

Another important ingredient for the development of the clustering in-
stability is a clear distinction between the interior and the exterior of the
interaction area, so that there is a well-defined interaction range R. This
leads to the existence of ‘death zones’ where particles experience enhanced
competition with neighboring clusters when these are at a distance in between
R and 2R. We have seen that when interactions depend on distance via an
interaction kernel G(x) the mathematical condition for a sharply defined
interaction range R is the presence of negative components in the Fourier
transform of the interaction kernel, Ĝk. When they are present, the death
zones, and then the pattern forming instability, occur (at small mobilities).

In the context of species competition in niche space early approaches
proposed Gaussian or positively-definite kernels that precluded this feature
(MacArthur and Levins, 1967; May and MacArthur, 1972; Roughgarden, 1979).
But later work provided more general expressions allowing it (Schoener, 1974;
Abrams, 1975; Hernández-Garćıa et al., 2009; Barabás et al., 2012; Leimar et al.,
2013). We refer to the last two references for recent reviews of this species-
competition setting. For organisms competing in space one can envisage
several mechanisms leading to a sufficiently sharp boundary for the compe-
tition range, but perhaps the simplest example arises in plant competition,
because of the finite extent of the roots. The clustering instability has been
reported in that case.
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Many open questions remain to be addressed. In particular a fully non-
linear analytic approach able to describe two-species competition and coex-
istence, properly taking into account particle’s discrete nature that greatly
affects front propagation. In the line of including more realistic features,
extensions to other types of organism motion, in particular to combinations
that alternate Brownian and Lévy displacements as in Thiel et al. (2012),
are worth to be explored.
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µ νc qc = kcR δ/R = 2π/qc
0.1 17.8039 5.11619 1.22810
0.5 34.1020 5.03951 1.24679
1.0 76.1997 4.94708 1.27008
1.5 168.726 4.85988 1.29287
2.0 370.384 4.77901 1.31475

Table 1: Critical value νc such that if ν > νc the growth rate in Eq. (11) becomes
positive and pattern formation occurs, for Lévy walkers of different values of µ, and for
the Gaussian case which is labeled with the value µ = 2. The selected wavenumber qc and
the associated pattern periodicity δ are also displayed.
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Figure 1: Snapshots of configurations of competing bugs in statistically steady states. In
all panels rb0 = 1, rd0 = 0.1, and R = 0.1. In (a) and (b) competition enters only in the
birth rate, with α = 0.02 and β = 0. (c) considers competition only in the death rate,
α = 0, β = 0.02. Motion in panels (a) and (c) is of the Gaussian type, with κ = 10−5.
Lévy flights with µ = 1 and κµ = 56× 10−5 occur in (b).
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Figure 2: A sketch illustrating the mechanism of the clustering instability: two main
clusters of particles are displayed, separated by a distance δ between R and 2R. The circles
approximate the respective competition ranges. Particles in the intersection between the
two ranges, the death zone, experience competition from bugs in the two clusters.
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Figure 3: The linear growth rate from Eq. (11). Panel a) displays the Gaussian case
(formally µ = 2 in Eq. (11)) for two values of ν, one below and another above the cluster
instability occurring at νc = 370.384 (see Table 1). Panel b) is for the Lévy case with
µ = 1 for which νc = 76.1997. In both panels the vertical dotted line indicates the critical
wavenumber (qc from Table 1) at which instability first occurs.
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Figure 4: Outcome of competition between Brownian and Lévy walkers (with µ = 1) at
rb0 = 1, rd0 = 0.1, R = 0.1, α = 0.02 and β = 0. Symbols indicating which is the winner
in the competition are displayed as a function of the quantities |D̂µ(kL)| = κµ(qc/R)µ =

49.47 κ1 for the Lévy walkers, and |D̂2(kB)| = κ (qc/R)2 = 2284κ for the Brownian ones
(critical wavenumber values qc are from Table 1). Depending on the diffusivity values κ
and κ1 either Brownian or Lévy walkers win, or coexistence occurs. Each point reflects
the outcome of 25 realizations. Superimposed symbols indicate that individual realizations
end in different states. The main diagonal sketched by the straight line is the prediction
for the change in winner obtained in subsection 4.4.
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Figure 5: Radial distribution function for single-species systems consisting of Lévy walkers
characterized by different values of the anomalous diffusion coefficient κµ, with µ = 1, or
of Brownian walkers characterized by different values of diffusion coefficient κ. Other
parameters as in Fig. 4.
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Figure 6: The fixation or extinction time, τ , as a function of the diffusion coefficient κ of
the Brownian walkers for three values of the anomalous diffusion coefficient, κµ, of the Lévy
walkers (with µ = 1). Other parameters as in Figs. 4 and 5. The symbols are the same
as in Fig. 4, referring to which species survives in the competition; i.e., for κµ = 4× 10−4

(|D̂µ(kL)| = 0.0198 in Fig. 4) we depict the extinction time of Brownian walkers (Lévy

walkers win the competition) and for κµ = 4 × 10−2 (|D̂µ(kL)| = 1.98) the extinction
time of Lévy walkers (Brownian walkers win the competition). For the intermediate value
κµ = 4 × 10−3 (|D̂µ(kL)| = 0.198) we observe the two types of outcome, as indicated by
the different symbols. The results are obtained by averaging over 25 realizations.
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