29,067 research outputs found

    Evidence of chaotic modes in the analysis of four delta Scuti stars

    Full text link
    Since CoRoT observations unveiled the very low amplitude modes that form a flat plateau in the power spectrum structure of delta Scuti stars, the nature of this phenomenon, including the possibility of spurious signals due to the light curve analysis, has been a matter of long-standing scientific debate. We contribute to this debate by finding the structural parameters of a sample of four delta Scuti stars, CID 546, CID 3619, CID 8669, and KIC 5892969, and looking for a possible relation between these stars' structural parameters and their power spectrum structure. For the purposes of characterization, we developed a method of studying and analysing the power spectrum with high precision and have applied it to both CoRoT and Kepler light curves. We obtain the best estimates to date of these stars' structural parameters. Moreover, we observe that the power spectrum structure depends on the inclination, oblateness, and convective efficiency of each star. Our results suggest that the power spectrum structure is real and is possibly formed by 2-period island modes and chaotic modes

    Cold giant planets evaporated by hot white dwarfs

    Get PDF
    Atmospheric escape from close-in Neptunes and hot Jupiters around Sun-like stars driven by extreme ultraviolet (EUV) irradiation plays an important role in the evolution of exoplanets and in shaping their ensemble properties. Intermediate and low mass stars are brightest at EUV wavelengths at the very end of their lives, after they have expelled their envelopes and evolved into hot white dwarfs. Yet the effect of the intense EUV irradiation of giant planets orbiting young white dwarfs has not been assessed. We show that the giant planets in the solar system will experience significant hydrodynamic escape caused by the EUV irradiation from the white dwarf left behind by the Sun. A fraction of the evaporated volatiles will be accreted by the solar white dwarf, resulting in detectable photospheric absorption lines. As a large number of the currently known extrasolar giant planets will survive the metamorphosis of their host stars into white dwarfs, observational signatures of accretion from evaporating planetary atmospheres are expected to be common. In fact, one-third of the known hot single white dwarfs show photospheric absorption lines of volatile elements, which we argue are indicative of ongoing accretion from evaporating planets. The fraction of volatile contaminated hot white dwarfs strongly decreases as they cool. We show that accretion from evaporating planetary atmospheres naturally explains this temperature dependence if more than 50% of hot white dwarfs still host giant planets

    A Frequency Comb calibrated Solar Atlas

    Full text link
    The solar spectrum is a primary reference for the study of physical processes in stars and their variation during activity cycles. In Nov 2010 an experiment with a prototype of a Laser Frequency Comb (LFC) calibration system was performed with the HARPS spectrograph of the 3.6m ESO telescope at La Silla during which high signal-to-noise spectra of the Moon were obtained. We exploit those Echelle spectra to study the optical integrated solar spectrum . The DAOSPEC program is used to measure solar line positions through gaussian fitting in an automatic way. We first apply the LFC solar spectrum to characterize the CCDs of the HARPS spectrograph. The comparison of the LFC and Th-Ar calibrated spectra reveals S-type distortions on each order along the whole spectral range with an amplitude of +/-40 m/s. This confirms the pattern found by Wilken et al. (2010) on a single order and extends the detection of the distortions to the whole analyzed region revealing that the precise shape varies with wavelength. A new data reduction is implemented to deal with CCD pixel inequalities to obtain a wavelength corrected solar spectrum. By using this spectrum we provide a new LFC calibrated solar atlas with 400 line positions in the range of 476-530, and 175 lines in the 534-585 nm range. The new LFC atlas improves the accuracy of individual lines by a significant factor reaching a mean value of about 10 m/s. The LFC--based solar line wavelengths are essentially free of major instrumental effects and provide a reference for absolute solar line positions. We suggest that future LFC observations could be used to trace small radial velocity changes of the whole solar photospheric spectrum in connection with the solar cycle and for direct comparison with the predicted line positions of 3D radiative hydrodynamical models of the solar photosphere.Comment: Accept on the 15th of October 2013. 9 pages, 10 figures. ON-lINE data A&A 201

    Investigation of Anti-Phase Asymmetric Quiet Rotor Technology

    Get PDF
    The future of urban air mobility has a well-known tall pole challenge in the form of community acceptance which largely comes from the noise. This paper presents a proposed anti-phase rotor technology that could reduce noise sources such as blade vortex interaction noise. The anti-phase rotor technology includes a rotor design with various anti-phase alternating trailing edge patterns and a rotor design with an asymmetric blade tip. Four small-scale anti-phase rotors are fabricated by 3D printing for acoustic measurements conducted in a low-speed open-circuit wind tunnel to assess the effectiveness of the proposed anti-phase rotor technology. Preliminary test results appear to be promising and indicate that the anti-phase rotor designs could be a practical means of reducing blade vortex interactions and noise. The four tested anti-phase rotor designs have peak acoustic performance depending on the RPM and thrust which suggests improved performance through design optimization could be achieved for specific mission requirements

    Goplana Dioscoreae-Alatae Nom. Nov and Other Uredinales On Dioscoreaceae: Nomenclature and Taxonomy

    Get PDF
    Among the sixteen species of rust fungi described on Dioscoreaceae, three require replacement names. This paper re-describes and proposes Goplana dioscoreae-alatae as a replacement name for Goplana dioscoreae Cummins, nom. illegit. We also propose Uredo dioscoreae-doryphorae as a replacement name for Uredo spinulosa Y. Ono, nom. illegit.; and Aecidium tumbayensis as a replacement name for Aecidium dioscoreae J.C. Lindq., nom. illegit. We discuss nomenclatural controversies surrounding these taxa

    The Transition State in a Noisy Environment

    Get PDF
    Transition State Theory overestimates reaction rates in solution because conventional dividing surfaces between reagents and products are crossed many times by the same reactive trajectory. We describe a recipe for constructing a time-dependent dividing surface free of such recrossings in the presence of noise. The no-recrossing limit of Transition State Theory thus becomes generally available for the description of reactions in a fluctuating environment
    corecore