3,362 research outputs found

    Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.

    Get PDF
    Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studie

    The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study

    Get PDF
    BACKGROUND: Sedentary behaviours, defined as non exercising seated activities, have been shown to have deleterious effects on health. It has been hypothesised that too much sitting time can have a detrimental effect on bone health in youth. The aim of this study is to test this hypothesis by exploring the association between objectively measured volume and patterns of time spent in sedentary behaviours, time spent in specific screen-based sedentary pursuits and bone mineral content (BMC) accrual in youth. METHODS: NHANES 2005–2006 cycle data includes BMC of the femoral and spinal region via dual-energy X-ray absorptiometry (DEXA), assessment of physical activity and sedentary behaviour patterns through accelerometry, self reported time spent in screen based pursuits (watching TV and using a computer), and frequency of vigorous playtime and strengthening activities. Multiple regression analysis, stratified by gender was performed on N = 671 males and N = 677 females aged from 8 to 22 years. RESULTS: Time spent in screen-based sedentary behaviours is negatively associated with femoral BMC (males and females) and spinal BMC (females only) after correction for time spent in moderate and vigorous activity. Regression coefficients indicate that an additional hour per day of screen-based sitting corresponds to a difference of −0.77 g femoral BMC in females [95% CI: -1.31 to −0.22] and of −0.45 g femoral BMC in males [95% CI: -0.83 to −0.06]. This association is attenuated when self-reported engagement in regular (average 5 times per week) strengthening exercise (for males) and vigorous playing (for both males and females) is taken into account. Total sitting time and non screen-based sitting do not appear to have a negative association with BMC, whereas screen based sedentary time does. Patterns of intermittence between periods of sitting and moderate to vigorous activity appears to be positively associated with bone health when activity is clustered in time and inter-spaced with long continuous bouts of sitting. CONCLUSIONS: Some specific sedentary pursuits (screen-based) are negatively associated with bone health in youth. This association is specific to gender and anatomical area. This relationship between screen-based time and bone health is independent of the total amount of physical activity measured objectively, but not independent of self-reported frequency of strengthening and vigorous play activities. The data clearly suggests that the frequency, rather than the volume, of osteogenic activities is important in counteracting the effect of sedentary behaviour on bone health. The pattern of intermittence between sedentary periods and activity also plays a role in bone accrual, with clustered short bouts of activity interspaced with long periods of sedentary behaviours appearing to be more beneficial than activities more evenly spread in time

    Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia

    Get PDF
    BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci

    Biomechanical Thresholds Regulate Inflammation through the NF-κB Pathway: Experiments and Modeling

    Get PDF
    BACKGROUND: During normal physical activities cartilage experiences dynamic compressive forces that are essential to maintain cartilage integrity. However, at non-physiologic levels these signals can induce inflammation and initiate cartilage destruction. Here, by examining the pro-inflammatory signaling networks, we developed a mathematical model to show the magnitude-dependent regulation of chondrocytic responses by compressive forces. METHODOLOGY/PRINCIPAL FINDINGS: Chondrocytic cells grown in 3-D scaffolds were subjected to various magnitudes of dynamic compressive strain (DCS), and the regulation of pro-inflammatory gene expression via activation of nuclear factor-kappa B (NF-kappaB) signaling cascade examined. Experimental evidences provide the existence of a threshold in the magnitude of DCS that regulates the mRNA expression of nitric oxide synthase (NOS2), an inducible pro-inflammatory enzyme. Interestingly, below this threshold, DCS inhibits the interleukin-1beta (IL-1beta)-induced pro-inflammatory gene expression, with the degree of suppression depending on the magnitude of DCS. This suppression of NOS2 by DCS correlates with the attenuation of the NF-kappaB signaling pathway as measured by IL-1beta-induced phosphorylation of the inhibitor of kappa B (IkappaB)-alpha, degradation of IkappaB-alpha and IkappaB-beta, and subsequent nuclear translocation of NF-kappaB p65. A mathematical model developed to understand the complex dynamics of the system predicts two thresholds in the magnitudes of DCS, one for the inhibition of IL-1beta-induced expression of NOS2 by DCS at low magnitudes, and second for the DCS-induced expression of NOS2 at higher magnitudes. CONCLUSIONS/SIGNIFICANCE: Experimental and computational results indicate that biomechanical signals suppress and induce inflammation at critical thresholds through activation/suppression of the NF-kappaB signaling pathway. These thresholds arise due to the bistable behavior of the networks originating from the positive feedback loop between NF-kappaB and its target genes. These findings lay initial groundwork for the identification of the thresholds in physical activities that can differentiate its favorable actions from its unfavorable consequences on joints

    BDNF Facilitates L-LTP Maintenance in the Absence of Protein Synthesis through PKMζ

    Get PDF
    Late-phase long term potentiation (L-LTP) is thought to be the cellular basis for long-term memory (LTM). While LTM as well as L-LTP is known to depend on transcription and translation, it is unclear why brain-derived neurotrophic factor (BDNF) could sustain L-LTP when protein synthesis is inhibited. The persistently active protein kinase ζ (PKMζ) is the only molecule implicated in perpetuating L-LTP maintenance. Here, in mouse acute brain slices, we show that inhibition of PKMζ reversed BDNF-dependent form of L-LTP. While BDNF did not alter the steady-state level of PKMζ, BDNF together with the L-LTP inducing theta-burst stimulation (TBS) increased PKMζ level even without protein synthesis. Finally, in the absence of de novo protein synthesis, BDNF maintained TBS-induced PKMζ at a sufficient level. These results suggest that BDNF sustains L-LTP through PKMζ in a protein synthesis-independent manner, revealing an unexpected link between BDNF and PKMζ

    Histoplasma capsulatum proteome response to decreased iron availability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fundamental pathogenic feature of the fungus <it>Histoplasma capsulatum </it>is its ability to evade innate and adaptive immune defenses. Once ingested by macrophages the organism is faced with several hostile environmental conditions including iron limitation. <it>H. capsulatum </it>can establish a persistent state within the macrophage. A gap in knowledge exists because the identities and number of proteins regulated by the organism under host conditions has yet to be defined. Lack of such knowledge is an important problem because until these proteins are identified it is unlikely that they can be targeted as new and innovative treatment for histoplasmosis.</p> <p>Results</p> <p>To investigate the proteomic response by <it>H. capsulatum </it>to decreasing iron availability we have created <it>H. capsulatum </it>protein/genomic databases compatible with current mass spectrometric (MS) search engines. Databases were assembled from the <it>H. capsulatum </it>G217B strain genome using gene prediction programs and expressed sequence tag (EST) libraries. Searching these databases with MS data generated from two dimensional (2D) in-gel digestions of proteins resulted in over 50% more proteins identified compared to searching the publicly available fungal databases alone. Using 2D gel electrophoresis combined with statistical analysis we discovered 42 <it>H. capsulatum </it>proteins whose abundance was significantly modulated when iron concentrations were lowered. Altered proteins were identified by mass spectrometry and database searching to be involved in glycolysis, the tricarboxylic acid cycle, lysine metabolism, protein synthesis, and one protein sequence whose function was unknown.</p> <p>Conclusion</p> <p>We have created a bioinformatics platform for <it>H. capsulatum </it>and demonstrated the utility of a proteomic approach by identifying a shift in metabolism the organism utilizes to cope with the hostile conditions provided by the host. We have shown that enzyme transcripts regulated by other fungal pathogens in response to lowering iron availability are also regulated in <it>H. capsulatum </it>at the protein level. We also identified <it>H. capsulatum </it>proteins sensitive to iron level reductions which have yet to be connected to iron availability in other pathogens. These data also indicate the complexity of the response by <it>H. capsulatum </it>to nutritional deprivation. Finally, we demonstrate the importance of a strain specific gene/protein database for <it>H. capsulatum </it>proteomic analysis.</p

    APOGEE chemical abundances of globular cluster giants in the inner Galaxy

    Get PDF
    We report chemical abundances obtained by Sloan Digital Sky Survey (SDSS)-III/Apache Point Observatory Galactic Evolution Experiment for giant stars in five globular clusters located within 2.2 kpc of the Galactic Centre. We detect the presence of multiple stellar populations in four of those clusters (NGC 6553, NGC 6528, Terzan 5 and Palomar 6) and find strong evidence for their presence in NGC 6522. All clusters with a large enough sample present a significant spread in the abundances of N, C, Na and Al, with the usual correlations and anticorrelations between various abundances seen in other globular clusters. Our results provide important quantitative constraints on theoretical models for self-enrichment of globular clusters, by testing their predictions for the dependence of yields of elements such as Na, N, C and Al on metallicity. They also confirm that, under the assumption that field N-rich stars originate from globular cluster destruction, they can be used as tracers of their parental systems in the high-metallicity regime
    corecore