35,908 research outputs found

    Photometry of the eclipsing cataclysmic variable SDSS J152419.33+220920.0

    Full text link
    Aims. We present new photometry of the faint and poorly studied cataclysmic variable SDSS J152419.33+220920.0, analyze its light curve and provide an accurate ephemeris for this system. Methods. Time-resolved CCD differential photometry was carried out using the 1.5m and 0.84m telescopes at the Observatorio Astronomico Nacional at San Pedro Martir. Results. From time-resolved photometry of the system obtained during six nights (covering more than twenty primary eclipse cycles in more than three years), we show that this binary presents a strong primary and a weak secondary modulation. Our light curve analysis shows that only two fundamental frequencies are present, corresponding to the orbital period and a modulation with twice this frequency. We determine the accurate ephemeris of the system to be HJD(eclipse)= 2454967.6750(1) + 0.06531866661(1) E. A double-hump orbital period modulation, a standing feature in several bounce-back systems at quiescence, is present at several epochs. However, we found no other evidence to support the hypothesis that this system belongs to the post-minimum orbital-period systems

    Transverse parton momenta in single inclusive hadron production in e+e−{e^ + }{e^ - } annihilation processes

    Get PDF
    We study the transverse momentum distributions of single inclusive hadron production in e+e−{e^ + }{e^ - } annihilation processes. Although the only available experimental data are scarce and quite old, we find that the fundamental features of transverse momentum dependent (TMD) evolution, historically addressed in Drell-Yan processes and, more recently, in Semi-inclusive deep inelastic scattering processes, are visible in e+e−{e^ + }{e^ - } annihilations as well. Interesting effects related to its non-perturbative regime can be observed. We test two different parameterizations for the p⊥p_\perp dependence of the cross section: the usual Gaussian distribution and a power-law model. We find the latter to be more appropriate in describing this particular set of experimental data, over a relatively large range of p⊥p_\perp values. We use this model to map some of the features of the data within the framework of TMD evolution, and discuss the caveats of this and other possible interpretations, related to the one-dimensional nature of the available experimental data

    Electromagnetic radiation produced by avalanches in the magnetization reversal of Mn12-Acetate

    Full text link
    Electromagnetic radiation produced by avalanches in the magnetization reversal of Mn12-Acetate has been measured. Short bursts of radiation have been detected, with intensity significantly exceeding the intensity of the black-body radiation from the sample. The model based upon superradiance from inversely populated spin levels has been suggested

    Quantum dynamics of vortices in mesoscopic magnetic disks

    Full text link
    Model of quantum depinning of magnetic vortex cores from line defects in a disk geometry and under the application of an in-plane magnetic field has been developed within the framework of the Caldeira-Leggett theory. The corresponding instanton solutions are computed for several values of the magnetic field. Expressions for the crossover temperature Tc and for the depinning rate \Gamma(T) are obtained. Fitting of the theory parameters to experimental data is also presented.Comment: 8 page

    Flexible Parametrization of Generalized Parton Distributions: The Chiral-Odd Sector

    Get PDF
    We present a physically motivated parameterization of the chiral-odd generalized parton distributions. The parametrization is an extension of our previous one in the chiral-even sector which was based on the reggeized diquark model. While for chiral even generalized distributions a quantitative fit with uncertainty estimation can be performed using deep inelastic scattering data, nucleon electromagnetic, axial and pseudoscalar form factors measurements, and all available deeply virtual Compton scattering data, the chiral-odd sector is far less constrained. While awaiting the analysis of measurements on pseudoscalar mesons exclusive electroproduction which are key for the extraction of chiral odd GPDs, we worked out a connection between the chiral-even and chiral-odd reduced helicity amplitudes using Parity transformations. The connection works for a class of models including two-components models. This relation allows us to estimate the size of the various chiral odd contributions and it opens the way for future quantitative fits.Comment: 35 pages, 18 figures, text changes, corrected typos, added fig.
    • …
    corecore