27,949 research outputs found

    Avoided crossing resonances: structural and dynamical aspects

    Full text link
    We examine structural and dynamical properties of quantum resonances associated with an avoided crossing and identify the parameter shifts where these properties attain maximal or extreme values, first at a general level, and then for a two-level system coupled to a harmonic oscillator, of the type commonly found in quantum optics. Finally the results obtained are exemplified and applied to optimize the fidelity and speed of quantum gates in trapped ions.Comment: 4 pages, 1 figur

    Constraints on dark matter physics from dwarf galaxies through galaxy cluster haloes

    Full text link
    One of the predictions of the standard CDM is that dark haloes have centrally divergent density profiles. An extensive body of rotation curve observations of dwarf and low surface brightness galaxies shows the dark haloes of those systems to be characterized by soft constant density central cores. Several physical processes have been proposed to produce soft cores in dark haloes, each one with different scaling properties. With the aim of discriminating among them we have examined the rotation curves of dark matter dominated dwarf and low surface brightness galaxies and the inner mass profiles of two clusters of galaxies lacking a central cD galaxy and with evidence of soft cores in the centre. The core radii and central densities of these haloes scale in a well defined manner with the depth of their potential wells, as measured through the maximum circular velocity. As a result of our analysis we identify self-interacting CDM as a viable solution to the core problem, where a non-singular isothermal core is formed in the halo center surrounded by a Navarro, Frenk, & White profile in the outer parts. We show that this particular physical situation predicts core radii in agreement with observations. Furthermore, using the observed scalings, we derive an expression for the minimum cross section (\sigma) which has an explicit dependence with the halo dispersion velocity (v). If m_x is the mass of the dark matter particle: \sigma/m_x ~4 10^-25 (v/100 km s^-1)^-1 cm^2/Gev.Comment: Minor corrections after referee revision, references updated. 11 pages, includes encapsulated figures. Submitted to MNRAS (March 22

    Mode stability in delta Scuti stars: linear analysis versus observations in open clusters

    Full text link
    A comparison between linear stability analysis and observations of pulsation modes in five delta Scuti stars, belonging to the same cluster, is presented. The study is based on the work by Michel et al. (1999), in which such a comparison was performed for a representative set of model solutions obtained independently for each individual star considered. In this paper we revisit the work by Michel et al. (1999) following, however, a new approach which consists in the search for a single, complete, and coherent solution for all the selected stars, in order to constrain and test the assumed physics describing these objects. To do so, refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations are used. In addition, a crude attempt is made to study the role of rotation on the prediction of mode instabilities.The present results are found to be comparable with those reported by Michel et al. (1999). Within the temperature range log T_eff = 3.87-3.88 agreement between observations and model computations of unstable modes is restricted to values for the mixing-length parameter alpha_nl less or equal to 1.50. This indicates that for these stars a smaller value for alpha_nl is required than suggested from a calibrated solar model. We stress the point that the linear stability analysis used in this work still assumes stellar models without rotation and that further developments are required for a proper description of the interaction between rotation and pulsation dynamics.Comment: 8 pages, 4 figures, 3 tables. (MNRAS, in press

    Tunneling Splittings in Mn12-Acetate Single Crystals

    Full text link
    A Landau-Zener multi-crossing method has been used to investigate the tunnel splittings in high quality Mn12_{12}-acetate single crystals in the pure quantum relaxation regime and for fields applied parallel to the magnetic easy axis. With this method several individual tunneling resonances have been studied over a broad range of time scales. The relaxation is found to be non-exponential and a distribution of tunnel splittings is inferred from the data. The distributions suggest that the inhomogeneity in the tunneling rates is due to disorder that produces a non-zero mean value of the average transverse anisotropy, such as in a solvent disorder model. Further, the effect of intermolecular dipolar interaction on the magnetic relaxation has been studied.Comment: Europhysics Letters (in press). 7 pages, including 3 figure

    Temperature dependent dynamic and static magnetic response in magnetic tunnel junctions with Permalloy layers

    Full text link
    Ferromagnetic resonance and static magnetic properties of CoFe/Al2O3/CoFe/Py and CoFe/Al2O3/CoFeB/Py magnetic tunnel junctions and of 25nm thick single-layer Permalloy(Py) films have been studied as a function of temperature down to 2K. The temperature dependence of the ferromagnetic resonance excited in the Py layers in magnetic tunnel junctions shows knee-like enhancement of the resonance frequency accompanied by an anomaly in the magnetization near 60K. We attribute the anomalous static and dynamic magnetic response at low temperatures to interface stress induced magnetic reorientation transition at the Py interface which could be influenced by dipolar soft-hard layer coupling through the Al2O3 barrier

    Effects of Hydrogen Bonding and Molecular Chain Flexibility of Substituted n-Alkyldimethylsilanes On Impact Ice Adhesion Shear Strength

    Get PDF
    The effects of hydrogen bonding and molecular flexibility upon ice adhesion shear strength were investigated using aluminum substrates coated with substituted n-alkyldimethylalkoxysilanes. The location of the chemical group substitution was on the opposing end of the linear n-alkyl chain with respect to silicon. Three hydrogen-bonding characteristics were evaluated: 1) non-hydrogen bonding, 2) donor/acceptor, and 3) acceptor. Varying the length of the n-alkyl chain provided an assessment of molecular chain flexibility. Coated and uncoated aluminum surfaces were characterized by receding water contact angle and surface roughness. Ice adhesion shear strength was determined in the Adverse Environment Rotor Test Stand facility from -16 to -8C that simulated aircraft in-flight icing conditions within the FAR Part 25/29 Appendix C icing envelope. Surface roughness of the coatings was similar allowing for comparison of the test results. An adhesion reduction factor, based on the ice adhesion shear strength data with respect to uncoated aluminum obtained at the same temperature, was calculated to compare the data. The results revealed complex interactions with impacting supercooled water droplets that were interdependent upon ice accretion temperature, surface energy characteristics of water and ice, hydrogen bonding characteristic of the substituent, and length of the n-alkyl chain. To aid in explaining the results, 1) changes in the surface energy component (i.e., non-polar and polar) values that water undergoes during its phase change from liquid to solid that arise from the freezing of impacting supercooled water droplets on the surface depended upon the temperature during accretion were taken into account and 2) the physical properties (i.e., water solubility and melting point) of small compounds analogous to the substituted n-alkyldimethylalkoxysilanes used in this study were compared

    3D molecular line formation in dwarf carbon-enhanced metal-poor stars

    Full text link
    We present a detailed analysis of the carbon and nitrogen abundances of two dwarf carbon-enhanced metal-poor (CEMP) stars: SDSS J1349-0229 and SDSS J0912+0216. We also report the oxygen abundance of SDSS J1349-0229. These stars are metal-poor, with [Fe/H] < -2.5, and were selected from our ongoing survey of extremely metal-poor dwarf candidates from the Sloan Digital SkySurvey (SDSS). The carbon, nitrogen and oxygen abundances rely on molecular lines which form in the outer layers of the stellar atmosphere. It is known that convection in metal-poor stars induces very low temperatures which are not predicted by `classical' 1D stellar atmospheres. To obtain the correct temperature structure, one needs full 3D hydrodynamical models. Using CO5BOLD 3D hydrodynamical model atmospheres and the Linfor3D line formation code, molecular lines of CH, NH, OH and C2 were computed, and 3D carbon, nitrogen and oxygen abundances were determined. The resulting carbon abundances were compared to abundances derived using atomic CI lines in 1D LTE and NLTE. There is not a good agreement between the carbon abundances determined from C2 bands and from the CH band, and molecular lines do not agree with the atomic CI lines. Although this may be partly due to uncertainties in the transition probabilities of the molecular bands it certainly has to do with the temperature structure of the outer layers of the adopted model atmosphere. We explore the influence of the 3D model properties on the molecular abundance determination. In particular, the choice of the number of opacity bins used in the model calculations and its subsequent effects on the temperature structure and molecular line formation is discussed. (Abridged)Comment: Poster presented at IAU JD 10, Rio de Janeiro, 10-11 August 2009, published in Memorie della Societa' Astronomica Italiana, Vol. 80 n.3 P.735. One reference corrected, matches the published versio
    corecore