8,443 research outputs found

    Comparison of theoretical heat transfer model with results from experimental monitoring installed in a refurbishment with ventilated facade

    Get PDF
    One of the main points to consider when a building is renovated is the improvement of its energy efficiency, minimizing the heat loss through the enclosures and its heating consumption. Under this scope idea a ventilated facade was designed and incorporated in an educational building located in the city of Burgos (Spain). The main objective of this document is a comparison between the theoretical model of heat transfer across the building envelope separating the environment and the interior space, and the heat intake through a linear regression model with installed experimental monitoring. For this it has been necessary to carry out an exhaustive study of the thermal transmission of each one of the materials that make up the thermal envelope of the building, as well as the linear thermal bridges that can be produced before and after the renovation. In addition, thanks to the monitoring installed in the demonstrator building, the interior and exterior temperatures and the heat consumption of each of the radiators is known. In this way expected and real energy savings have been compared

    X-ray spectral variability of seven LINER nuclei with XMM-Newton and Chandra data

    Full text link
    One of the most important features in active galactic nuclei (AGN) is the variability of their emission. Variability has been discovered at X-ray, UV, and radio frequencies on time scales from hours to years. Among the AGN family and according to theoretical studies, Low-Ionization Nuclear Emission Line Region (LINER) nuclei would be variable objects on long time scales. Our purpose is to investigate spectral X-ray variability in LINERs and to understand the nature of these kinds of objects, as well as their accretion mechanism. Chandra and XMM-Newton public archives were used to compile X-ray spectra of seven LINER nuclei at different epochs with time scales of years. To search for variability we fit all the spectra from the same object with a set of models, in order to identify the parameters responsible for the variability pattern. We also analyzed the light curves in order to search for short time scale (from hours to days) variability. Whenever possible, UV variability was also studied. We found spectral variability in four objects, with variations mostly related to hard energies (2-10 keV). These variations are due to changes in the soft excess, and/or changes in the absorber, and/or intrinsic variations of the source. Another two galaxies seem not to vary. Short time scale variations during individual observations were not found. Our analysis confirms the previously reported anticorrelation between the X-ray spectral index and the Eddington ratio, and also the correlation between the X-ray to UV flux ratio and the Eddington ratio. These results support an Advection Dominated Accretion Flow (ADAF) as the accretion mechanism in LINERs.Comment: 35 pages, 53 figures, recently accepted pape

    X-ray spectral variability of Seyfert 2 galaxies

    Get PDF
    Variability across the electromagnetic spectrum is a property of AGN that can help constraining the physical properties of these galaxies. This is the third of a serie of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern in a sample of optically selected type 2 Seyfert galaxies. We use the 26 Seyferts in the Veron-Cetty and Veron catalogue with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source are simultaneously fitted and we let different parameters to vary in the model. Whenever possible, short-term variations and/or long-term UV flux variations are studied. We divide the sample in Compton-thick, Compton-thin, and changing-look candidates. Short-term variability at X-rays is not found. From the 25 analyzed sources, 11 show long-term variations; eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related with absorbers at hard X-rays are less common, and in many cases these variations are accompained with variations of the nuclear continuum. At UV frequencies nuclear variations are nor found. We report for the first time two changing-look candidates, MARK273 and NGC7319. A constant reflection component located far away from the nucleus plus a variable nuclear continuum are able to explain most of our results; the Compton-thick candidates are dominated by reflection, which supresses their continuum making them seem fainter, and not showing variations, while the Compton-thin and changing-look candidates show variations.Comment: Accepted for publication in A&

    X-ray spectral variability of LINERs selected from the Palomar sample

    Full text link
    Variability is a general property of active galactic nuclei (AGN). At X-rays, the way in which these changes occur is not yet clear. In the particular case of low ionisation nuclear emission line region (LINER) nuclei, variations on months/years timescales have been found for some objects, but the main driver of these changes is still an open question. The main purpose of this work is to investigate the X-ray variability in LINERs, including the main driver of such variations, and to search for eventual differences between type 1 and 2 objects. We use the 18 LINERs in the Palomar sample with data retrieved from Chandra and/or XMM-Newton archives corresponding to observations gathered at different epochs. All the spectra for the same object are simultaneously fitted in order to study long term variations. The nature of the variability patterns are studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and UV variability are studied.Comment: 49 pages, accepted. arXiv admin note: text overlap with arXiv:1305.222

    Relationship between alcoholism addiction and periodontitis. An in vivo study using drinking-in-darkness protocol in rats.

    Get PDF
    Periodontal disease (PD) has been considered a probable risk factor for several systemic diseases. Among them, PD is presumed to be one of the possible etiologies of chronic illness of the central nervous system. In this context, poor oral health and PD is associated with substance abuse in humans. However, if periodontal lesions can produce addiction is unknown. This paper aims to evaluate the possibility that chronic periodontal injury (CPL) can cause ethanol binge intake in drink-in-darkness (DID) protocol in rats. In CPL group (n=10) experimental damage was done to the periodontal tissue of the secondmaxillary molar, the control group (n=9) received sham injury. Forty-three days after CPL the intake of ethanol was assessed using several concentrations in DID experiment. During the DID experiment, we observed significant differences between the binge-type consumption of ethanol at the lowest concentration of 10% (p=0.01). Differences in consumption of 20% ethanol are observed during a few days (p=0.04), and there are no differences in consumption at 40% concentration of ethanol (p=0.2). It is concluded that chronic periodontal lesion leads to alcoholism in Wistar rats

    A test for asymptotic giant branch evolution theories: Planetary Nebulae in the Large Magellanic Cloud

    Get PDF
    We used a new generation of asymptotic giant branch (AGB) stellar models that include dust formation in the stellar winds to find the links between evolutionary models and the observed properties of a homogeneous sample of Large Magellanic Cloud (LMC) planetary nebulae (PNe). Comparison between the evolutionary yields of elements such as CNO and the corresponding observed chemical abundances is a powerful tool to shed light on evolutionary processes such as hot bottom burning (HBB) and third dredge-up (TDU). We found that the occurrence of HBB is needed to interpret the nitrogen-enriched (log(N/H)+12>8) PNe. In particular, N-rich PNe with the lowest carbon content are nicely reproduced by AGB models of mass M >=6 Mo, whose surface chemistry reflects the pure effects of HBB. PNe with log(N/H)+12<7.5 correspond to ejecta of stars that have not experienced HBB, with initial mass below about 3 Mo. Some of these stars show very large carbon abundances, owing to the many TDU episodes experienced. We found from our LMC PN sample that there is a threshold to the amount of carbon accumulated at AGB surfaces, log(C/H)+12<9. Confirmation of this constraint would indicate that, after the C-star stage is reached,AGBs experience only a few thermal pulses, which suggests a rapid loss of the external mantle, probably owing to the effects of radiation pressure on carbonaceous dust particles present in the circumstellar envelope. The implications of these findings for AGB evolution theories and the need to extend the PN sample currently available are discussed.Comment: 12 pages, 4 figures, 1 table, accepted for publication in MNRAS (2015 July 13; in original form 2015 June 9

    Planetary Nebulae in the Small Magellanic Cloud

    Get PDF
    We analyse the planetary nebulae (PNe) population of the Small Magellanic Cloud (SMC), based on evolutionary models of stars with metallicities in the range 103Z4×10310^{-3} \leq Z \leq 4\times 10^{-3} and mass 0.9M<M<8M0.9 M\odot < M < 8M\odot, evolved through the asymptotic giant branch (AGB) phase. The models used account for dust formation in the circumstellar envelope. To characterise the PNe sample of the SMC, we compare the observed abundances of the various species with the final chemical composition of the AGB models: this study allows us to identify the progenitors of the PNe observed, in terms of mass and chemical composition. According to our interpretation, most of the PNe descend from low-mass (M<2MM < 2 M\odot) stars, which become carbon rich, after experiencing repeated third dredge-up episodes, during the AGB phase. A fraction of the PNe showing the signature of advanced CNO processing are interpreted as the progeny of massive AGB stars, with mass above 6M\sim 6 M\odot, undergoing strong hot bottom burning. The differences with the chemical composition of the PNe population of the Large Magellanic Cloud (LMC) is explained on the basis of the diverse star formation history and age-metallicity relation of the two galaxies. The implications of the present study for some still highly debated points regarding the AGB evolution are also commented.Comment: Accepted for publication in MNRAS, 11 pages, 4 figure
    corecore