8,256 research outputs found

    Kinematic study of planetary nebulae in NGC 6822

    Full text link
    By measuring precise radial velocities of planetary nebulae (which belong to the intermediate age population), H II regions, and A-type supergiant stars (which are members of the young population) in NGC 6822, we aim to determine if both types of population share the kinematics of the disk of H I found in this galaxy. Spectroscopic data for four planetary nebulae were obtained with the high spectral resolution spectrograph Magellan Inamori Kyocera Echelle (MIKE) on the Magellan telescope at Las Campanas Observatory. Data for other three PNe and one H II region were obtained from the SPM Catalog of Extragalactic Planetary Nebulae which employed the Manchester Echelle Spectrometer attached to the 2.1m telescope at the Observatorio Astron\'omico Nacional, M\'exico. In the wavelength calibrated spectra, the heliocentric radial velocities were measured with a precision better than 5-6 km s1^{-1}. Data for three additional H II regions and a couple of A-type supergiant stars were collected from the literature. The heliocentric radial velocities of the different objects were compared to the velocities of the H i disk at the same position. From the analysis of radial velocities it is found that H II regions and A-type supergiants do share the kinematics of the H I disk at the same position, as expected for these young objects. On the contrary, planetary nebula velocities differ significantly from that of the H I at the same position. The kinematics of planetary nebulae is independent from the young population kinematics and it is closer to the behavior shown by carbon stars, which are intermediate-age members of the stellar spheroid existing in this galaxy. Our results are confirming that there are at least two very different kinematical systems in NGC 6822

    A novel Island Model based on Coral Reefs Optimization algorithm for solving the unequal area facility layout problem

    Get PDF
    This paper proposes a novel approach to address the Unequal Area Facility Layout Problem (UA-FLP), based on the combination of both an Island Model and a Coral Reefs Optimization (CRO) algorithm. Two different versions of this Island Model based on Coral Reefs Optimization Algorithm (IMCRO) are proposed and applied to the UA-FLP. The structure of flexible bays has been selected as effective encoding to represent the facility layouts within the algorithm. The two versions of the proposed approach have been tested in 22 UA-FLP cases, considering small, medium and large size categories. The empirical results obtained are compared with previous state of the art algorithms, in order to show the performance of the IMCRO. From this comparison, it can be extracted that both versions of the proposed IMCRO algorithm show an excellent performance, accurately solving the UA-FLP instances in all the size categories

    Diversity-induced resonance in a system of globally coupled linear oscillators

    Get PDF
    The purpose of this paper to analyze in some detail the arguably simplest case of diversity-induced reseonance: that of a system of globally-coupled linear oscillators subjected to a periodic forcing. Diversity appears as the parameters characterizing each oscillator, namely its mass, internal frequency and damping coefficient are drawn from a probability distribution. The main ingredients for the diversity-induced-resonance phenomenon are present in this system as the oscillators display a variability in the individual responses but are induced, by the coupling, to synchronize their responses. A steady state solution for this model is obtained. We also determine the conditions under which it is possible to find a resonance effect.Comment: Reported at the XI International Workshop "Instabilities and Nonequilibrium Structures" Vina del Mar (Chile

    Room temperature ferromagnetic-like behavior in Mn-implanted and post-annealed InAs layers deposited by Molecular Beam Epitaxy

    Get PDF
    We report on the magnetic and structural properties of Ar and Mn implanted InAs epitaxial films grown on GaAs (100) by Molecular Beam Epitaxy (MBE) and the effect of Rapid Thermal Annealing (RTA) for 30 seconds at 750C. Channeling Particle Induced X- ray Emission (PIXE) experiments reveal that after Mn implantation almost all Mn atoms are subsbtitutional in the In-site of the InAs lattice, like in a diluted magnetic semiconductor (DMS). All of these samples show diamagnetic behavior. But, after RTA treatment the Mn-InAs films exhibit room-temperature magnetism. According to PIXE measurements the Mn atoms are no longer substitutional. When the same set of experiments were performed with As as implantation ion all of the layers present diamagnetism without exception. This indicates that the appearance of room-temperature ferromagnetic-like behavior in the Mn-InAs-RTA layer is not related to lattice disorder produce during implantation, but to a Mn reaction produced after a short thermal treatment. X-ray diffraction patterns (XRD) and Rutherford Back Scattering (RBS) measurements evidence the segregation of an oxygen deficient-MnO2 phase (nominally MnO1.94) in the Mn-InAs-RTA epitaxial layers which might be on the origin of room temperature ferromagnetic-like response observed.Comment: 16 pages, 5 figures. Acepted in J. Appl. Phy
    corecore