12,538 research outputs found

    Majorana vs Pseudo-Dirac Neutrinos at the ILC

    Full text link
    Neutrino masses could originate in seesaw models testable at colliders, with light mediators and an approximate lepton number symmetry. The minimal model of this type contains two quasi-degenerate Majorana fermions forming a pseudo-Dirac pair. An important question is to what extent future colliders will have sensitivity to the splitting between the Majorana components, since this quantity signals the breaking of lepton number and is connected to the light neutrino masses. We consider the production of these neutral heavy leptons at the ILC, where their displaced decays provide a golden signal: a forward-backward charge asymmetry, which depends crucially on the mass splitting between the two Majorana components. We show that this observable can constrain the mass splitting to values much lower than current bounds from neutrinoless double beta decay and natural loop corrections.Comment: 16 pages, 5 figures; v2: Minor changes, version accepted for publication in EPJ

    Standard Model Baryogenesis

    Get PDF
    Simply on CP arguments, we argue against a Standard Model explanation of baryogenesis via the charge transport mechanism. A CP-asymmetry is found in the reflection coefficients of quarks hitting the electroweak phase boundary created during a first order phase transition. The problem is analyzed both in an academic zero temperature case and in the realistic finite temperature one. At finite temperature, a crucial role is played by the damping rate of quasi-quarks in a hot plasma, which induces loss of spatial coherence and suppresses reflection on the boundary even at tree-level. The resulting baryon asymmetry is many orders of magnitude below what observation requires. We comment as well on related works.Comment: 10 pages, CERN-TH. 7368/94, LPTHE Orsay-94/71, HD-THEP-94-2

    X-ray spectral variability of seven LINER nuclei with XMM-Newton and Chandra data

    Full text link
    One of the most important features in active galactic nuclei (AGN) is the variability of their emission. Variability has been discovered at X-ray, UV, and radio frequencies on time scales from hours to years. Among the AGN family and according to theoretical studies, Low-Ionization Nuclear Emission Line Region (LINER) nuclei would be variable objects on long time scales. Our purpose is to investigate spectral X-ray variability in LINERs and to understand the nature of these kinds of objects, as well as their accretion mechanism. Chandra and XMM-Newton public archives were used to compile X-ray spectra of seven LINER nuclei at different epochs with time scales of years. To search for variability we fit all the spectra from the same object with a set of models, in order to identify the parameters responsible for the variability pattern. We also analyzed the light curves in order to search for short time scale (from hours to days) variability. Whenever possible, UV variability was also studied. We found spectral variability in four objects, with variations mostly related to hard energies (2-10 keV). These variations are due to changes in the soft excess, and/or changes in the absorber, and/or intrinsic variations of the source. Another two galaxies seem not to vary. Short time scale variations during individual observations were not found. Our analysis confirms the previously reported anticorrelation between the X-ray spectral index and the Eddington ratio, and also the correlation between the X-ray to UV flux ratio and the Eddington ratio. These results support an Advection Dominated Accretion Flow (ADAF) as the accretion mechanism in LINERs.Comment: 35 pages, 53 figures, recently accepted pape

    X-ray spectral variability of Seyfert 2 galaxies

    Get PDF
    Variability across the electromagnetic spectrum is a property of AGN that can help constraining the physical properties of these galaxies. This is the third of a serie of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern in a sample of optically selected type 2 Seyfert galaxies. We use the 26 Seyferts in the Veron-Cetty and Veron catalogue with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source are simultaneously fitted and we let different parameters to vary in the model. Whenever possible, short-term variations and/or long-term UV flux variations are studied. We divide the sample in Compton-thick, Compton-thin, and changing-look candidates. Short-term variability at X-rays is not found. From the 25 analyzed sources, 11 show long-term variations; eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related with absorbers at hard X-rays are less common, and in many cases these variations are accompained with variations of the nuclear continuum. At UV frequencies nuclear variations are nor found. We report for the first time two changing-look candidates, MARK273 and NGC7319. A constant reflection component located far away from the nucleus plus a variable nuclear continuum are able to explain most of our results; the Compton-thick candidates are dominated by reflection, which supresses their continuum making them seem fainter, and not showing variations, while the Compton-thin and changing-look candidates show variations.Comment: Accepted for publication in A&

    The Effect of Composite Resonances on Higgs decay into two photons

    Get PDF
    In scenarios of strongly coupled electroweak symmetry breaking, heavy composite particles of different spin and parity may arise and cause observable effects on signals that appear at loop levels. The recently observed process of Higgs to γγ\gamma \gamma at the LHC is one of such signals. We study the new constraints that are imposed on composite models from H→γγH\to \gamma\gamma, together with the existing constraints from the high precision electroweak tests. We use an effective chiral Lagrangian to describe the effective theory that contains the Standard Model spectrum and the extra composites below the electroweak scale. Considering the effective theory cutoff at Λ=4πv∼3\Lambda = 4\pi v \sim 3 TeV, consistency with the TT and SS parameters and the newly observed H→γγH\to \gamma\gamma can be found for a rather restricted range of masses of vector and axial-vector composites from 1.51.5 TeV to 1.71.7 TeV and 1.81.8 TeV to 1.91.9 TeV, respectively, and only provided a non-standard kinetic mixing between the W3W^{3} and B0B^{0} fields is included.Comment: 30 pages, 10 figures. Version for publication in European Physical Journal

    X-ray spectral variability of LINERs selected from the Palomar sample

    Full text link
    Variability is a general property of active galactic nuclei (AGN). At X-rays, the way in which these changes occur is not yet clear. In the particular case of low ionisation nuclear emission line region (LINER) nuclei, variations on months/years timescales have been found for some objects, but the main driver of these changes is still an open question. The main purpose of this work is to investigate the X-ray variability in LINERs, including the main driver of such variations, and to search for eventual differences between type 1 and 2 objects. We use the 18 LINERs in the Palomar sample with data retrieved from Chandra and/or XMM-Newton archives corresponding to observations gathered at different epochs. All the spectra for the same object are simultaneously fitted in order to study long term variations. The nature of the variability patterns are studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and UV variability are studied.Comment: 49 pages, accepted. arXiv admin note: text overlap with arXiv:1305.222
    • …
    corecore