22,160 research outputs found

    Chiral asymmetry during the EWPT from CP-violating scattering off bubble walls

    Full text link
    We compute a net electric current during a first order EWPT arising from the asymmetric propagation of fermion chiral modes due to a CP-violating interaction with the Higgs. The interaction is quantified in terms of a CP-violating phase in the bubble wall that separate both false and true vacuum phases. We comment on the possibility of this current to generate a seed magnetic field and its implications for primordial magne- togenesis in the early Universe.Comment: To appear in the proceedings of the XLVII of the International Symposium of Multiparticle Dynamics, Tlaxcala, Mexico, September 10-15, 201

    On Types of Elliptic Pseudoprimes

    Full text link
    We generalize the notions of elliptic pseudoprimes and elliptic Carmichael numbers introduced by Silverman to analogues of Euler-Jacobi and strong pseudoprimes. We investigate the relationships among Euler Elliptic Carmichael numbers , strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I: The former two of these are introduced in this paper, and the latter two of these were introduced by Mazur (1973) and Silverman (2012) respectively. In particular, we expand upon a previous work of Babinkostova et al. by proving a conjecture about the density of certain elliptic Korselt numbers of Type I that are products of anomalous primes.Comment: Revised for publication. 33 page

    Probing the ZZgamma and Zgammagamma Couplings Through the Process e+e- --> nu anti-nu gamma

    Full text link
    We study the sensitivity for testing the anomalous triple gauge couplings ZZγZZ\gamma and ZγγZ\gamma\gamma via the process e+e−→ννˉγe^+e^-\to \nu \bar\nu \gamma at high energy linear colliders. For integrated luminosities of 500 fb−1fb^{-1} and center of mass energies between 0.5 and 1.5 TeVTeV, we find that this process can provide tests of the triple neutral gauge boson couplings of order 10−410^{-4}, one order of magnitude lower than the standard model prediction.Comment: 12 pages, 6 figure

    Intrinsic versus super-rough anomalous scaling in spontaneous imbibition

    Get PDF
    We study spontaneous imbibition using a phase field model in a two dimensional system with a dichotomic quenched noise. By imposing a constant pressure μa<0\mu_{a}<0 at the origin, we study the case when the interface advances at low velocities, obtaining the scaling exponents z=3.0±0.1z=3.0\pm 0.1, α=1.50±0.02\alpha=1.50\pm 0.02 and αloc=0.95±0.03\alpha_{loc}= 0.95\pm 0.03 within the intrinsic anomalous scaling scenario. These results are in quite good agreement with experimental data recently published. Likewise, when we increase the interface velocity, the resulting scaling exponents are z=4.0±0.1z=4.0 \pm 0.1, α=1.25±0.02\alpha=1.25\pm 0.02 and αloc=0.95±0.03\alpha_{loc}= 0.95\pm 0.03. Moreover, we observe that the local properties of the interface change from a super-rough to an intrinsic anomalous description when the contrast between the two values of the dichotomic noise is increased. From a linearized interface equation we can compute analytically the global scaling exponents which are comparable to the numerical results, introducing some properties of the quenched noise.Comment: Accepted for publication in Physical Review

    Prompt photon yield and v2v_2 coefficient from gluon fusion induced by magnetic field in heavy-ion collision

    Full text link
    We compute the production of prompt photons and the v2v_2 harmonic coefficient in relativistic heavy-ion collisions induced by gluon fusion in the presence of an intense magnetic field, during the early stages of the reaction. The calculations take into account several parameters which are relevant to the description of the experimental transverse momentum distribution, and elliptic flow for RHIC and LHC energies. The main imput is the strength of the magnetic field which varies in magnitude from 1 to 3 times the pion mass squared, and allows the gluon fusion that otherwise is forbidden in the absence of the field. The high gluon occupation number and the value of the saturation scale also play an important role in our calculation, as well as a flow velocity and geometrical factors. Our results support the idea that the origin of at least some of the photon excess observed in heavy-ion experiments may arise from magnetic field induced processes, and gives a good description of the experimental data.Comment: 6 pages, 2 figures, conference paper from ISMD 201
    • …
    corecore