7 research outputs found

    Continuous glucose monitoring during diabetic pregnancy (GlucoMOMS): A multicentre randomized controlled trial

    No full text
    Contains fulltext : 198097.pdf (publisher's version ) (Closed access)AIM: Diabetes is associated with a high risk of adverse pregnancy outcomes. Optimal glycaemic control is fundamental and is traditionally monitored with self-measured glucose profiles and periodic HbA1c measurements. We investigated the effectiveness of additional use of retrospective continuous glucose monitoring (CGM) in diabetic pregnancies. MATERIAL AND METHODS: We performed a nationwide multicentre, open label, randomized, controlled trial to study pregnant women with type 1 or type 2 diabetes who were undergoing insulin therapy at gestational age < 16 weeks, or women who were undergoing insulin treatment for gestational diabetes at gestational age < 30 weeks. Women were randomly allocated (1:1) to intermittent use of retrospective CGM or to standard treatment. Glycaemic control was assessed by CGM for 5-7 days every 6 weeks in the CGM group, while self-monitoring of blood glucose and HbA1c measurements were applied in both groups. Primary outcome was macrosomia, defined as birth weight above the 90th percentile. Secondary outcomes were glycaemic control and maternal and neonatal complications. RESULTS: Between July 2011 and September 2015, we randomized 300 pregnant women with type 1 (n = 109), type 2 (n = 82) or with gestational (n = 109) diabetes to either CGM (n = 147) or standard treatment (n = 153). The incidence of macrosomia was 31.0% in the CGM group and 28.4% in the standard treatment group (relative risk [RR], 1.06; 95% CI, 0.83-1.37). HbA1c levels were similar between treatment groups. CONCLUSIONS: In diabetic pregnancy, use of intermittent retrospective CGM did not reduce the risk of macrosomia. CGM provides detailed information concerning glycaemic fluctuations but, as a treatment strategy, does not translate into improved pregnancy outcome

    TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans

    No full text
    Infectious diseases exert a constant evolutionary pressure on the genetic makeup of our innate immune system. Polymorphisms in Toll-like receptor 4 (TLR4) have been related to susceptibility to Gram-negative infections and septic shock. Here we show that two polymorphisms of TLR4, Asp299Gly and Thr399Ile, have unique distributions in populations from Africa, Asia, and Europe. Genetic and functional studies are compatible with a model in which the nonsynonymous polymorphism Asp299Gly has evolved as a protective allele against malaria, explaining its high prevalence in subSaharan Africa. However, the same allele could have been disadvantageous after migration of modern humans into Eurasia, putatively because of increased susceptibility to severe bacterial infections. In contrast, the Asp299Gly allele, when present in cosegregation with Thr399Ile to form the Asp299Gly/Thr399Ile haplotype, shows selective neutrality. Polymorphisms in TLR4 exemplify how the interaction between our innate immune system and the infectious pressures in particular environments may have shaped the genetic variations and function of our immune system during the out-of-Africa migration of modern humans

    SUGAR-DIP trial: oral medication strategy versus insulin for diabetes in pregnancy, study protocol for a multicentre, open-label, non-inferiority, randomised controlled trial

    Get PDF
    Contains fulltext : 208558.pdf (publisher's version ) (Open Access)INTRODUCTION: In women with gestational diabetes mellitus (GDM) requiring pharmacotherapy, insulin was the established first-line treatment. More recently, oral glucose lowering drugs (OGLDs) have gained popularity as a patient-friendly, less expensive and safe alternative. Monotherapy with metformin or glibenclamide (glyburide) is incorporated in several international guidelines. In women who do not reach sufficient glucose control with OGLD monotherapy, usually insulin is added, either with or without continuation of OGLDs. No reliable data from clinical trials, however, are available on the effectiveness of a treatment strategy using all three agents, metformin, glibenclamide and insulin, in a stepwise approach, compared with insulin-only therapy for improving pregnancy outcomes. In this trial, we aim to assess the clinical effectiveness, cost-effectiveness and patient experience of a stepwise combined OGLD treatment protocol, compared with conventional insulin-based therapy for GDM. METHODS: The SUGAR-DIP trial is an open-label, multicentre randomised controlled non-inferiority trial. Participants are women with GDM who do not reach target glycaemic control with modification of diet, between 16 and 34 weeks of gestation. Participants will be randomised to either treatment with OGLDs, starting with metformin and supplemented as needed with glibenclamide, or randomised to treatment with insulin. In women who do not reach target glycaemic control with combined metformin and glibenclamide, glibenclamide will be substituted with insulin, while continuing metformin. The primary outcome will be the incidence of large-for-gestational-age infants (birth weight >90th percentile). Secondary outcome measures are maternal diabetes-related endpoints, obstetric complications, neonatal complications and cost-effectiveness analysis. Outcomes will be analysed according to the intention-to-treat principle. ETHICS AND DISSEMINATION: The study protocol was approved by the Ethics Committee of the Utrecht University Medical Centre. Approval by the boards of management for all participating hospitals will be obtained. Trial results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NTR6134; Pre-results
    corecore