72 research outputs found

    Abnormal Motor Activity and Thermoregulation in a Schizophrenia Rat Model for Translational Science

    Get PDF
    Schizophrenia is accompanied by altered motor activity and abnormal thermoregulation; therefore, the presence of these symptoms can enhance the face validity of a schizophrenia animal model. The goal was to characterize these parameters in freely moving condition of a new substrain of rats showing several schizophrenia-related alterations.Male Wistar rats were used: the new substrain housed individually (for four weeks) and treated subchronically with ketamine, and naive animals without any manipulations. Adult animals were implanted with E-Mitter transponders intraabdominally to record body temperature and locomotor activity continuously. The circadian rhythm of these parameters and the acute effects of changes in light conditions were analyzed under undisturbed circumstances, and the effects of different interventions (handling, bed changing or intraperitoneal vehicle injection) were also determined.Decreased motor activity with fragmented pattern was observed in the new substrain. However, these animals had higher body temperature during the active phase, and they showed wider range of its alterations, too. The changes in light conditions and different interventions produced blunted hyperactivity and altered body temperature responses in the new substrain. Poincaré plot analysis of body temperature revealed enhanced short- and long-term variabilities during the active phase compared to the inactive phase in both groups. Furthermore, the new substrain showed increased short- and long-term variabilities with lower degree of asymmetry suggesting autonomic dysregulation.In summary, the new substrain with schizophrenia-related phenomena showed disturbed motor activity and thermoregulation suggesting that these objectively determined parameters can be biomarkers in translational research

    Thought Problems from Adolescence to Adulthood: Measurement Invariance and Longitudinal Heritability

    Get PDF
    This study investigates the longitudinal heritability in Thought Problems (TP) as measured with ten items from the Adult Self Report (ASR). There were ~9,000 twins, ~2,000 siblings and ~3,000 additional family members who participated in the study and who are registered at the Netherlands Twin Register. First an exploratory factor analysis was conducted to examine the underlying factor structure of the TP-scale. Then the TP-scale was tested for measurement invariance (MI) across age and sex. Next, genetic and environmental influences were modeled on the longitudinal development of TP across three age groups (12–18, 19–27 and 28–59 year olds) based on the twin and sibling relationships in the data. An exploratory factor analysis yielded a one-factor solution, and MI analyses indicated that the same TP-construct is assessed across age and sex. Two additive genetic components influenced TP across age: the first influencing TP throughout all age groups, while the second arises during young adulthood and stays significant throughout adulthood. The additive genetic components explained 37% of the variation across all age groups. The remaining variance (63%) was explained by unique environmental influences. The longitudinal phenotypic correlation between these age groups was entirely explained by the additive genetic components. We conclude that the TP-scale measures a single underlying construct across sex and different ages. These symptoms are significantly influenced by additive genetic factors from adolescence to late adulthood

    Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection

    Get PDF
    Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naïve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The “interferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination

    The catatonic dilemma expanded

    Get PDF
    Catatonia is a common syndrome that was first described in the literature by Karl Kahlbaum in 1874. The literature is still developing and remains unclear on many issues, especially classification, diagnosis, and pathophysiology. Clinicians caring for psychiatric patients with catatonic syndromes continue to face many dilemmas in diagnosis and treatment. We discuss many of the common problems encountered in the care of a catatonic patient, and discuss each problem with a review of the literature. Focus is on practical aspects of classification, epidemiology, differential diagnosis, treatment, medical comorbidity, cognition, emotion, prognosis, and areas for future research in catatonic syndromes

    Type I Interferon Signaling Regulates Ly6Chi Monocytes and Neutrophils during Acute Viral Pneumonia in Mice

    Get PDF
    Type I interferon (IFN-I) plays a critical role in the homeostasis of hematopoietic stem cells and influences neutrophil influx to the site of inflammation. IFN-I receptor knockout (Ifnar1−/−) mice develop significant defects in the infiltration of Ly6Chi monocytes in the lung after influenza infection (A/PR/8/34, H1N1). Ly6Chi monocytes of wild-type (WT) mice are the main producers of MCP-1 while the alternatively generated Ly6Cint monocytes of Ifnar1−/− mice mainly produce KC for neutrophil influx. As a consequence, Ifnar1−/− mice recruit more neutrophils after influenza infection than do WT mice. Treatment of IFNAR1 blocking antibody on the WT bone marrow (BM) cells in vitro failed to differentiate into Ly6Chi monocytes. By using BM chimeric mice (WT BM into Ifnar1−/− and vice versa), we confirmed that IFN-I signaling in hematopoietic cells is required for the generation of Ly6Chi monocytes. Of note, WT BM reconstituted Ifnar1−/− chimeric mice with increased numbers of Ly6Chi monocytes survived longer than influenza-infected Ifnar1−/− mice. In contrast, WT mice that received Ifnar1−/− BM cells with alternative Ly6Cint monocytes and increased numbers of neutrophils exhibited higher mortality rates than WT mice given WT BM cells. Collectively, these data suggest that IFN-I contributes to resistance of influenza infection by control of monocytes and neutrophils in the lung

    Neuroleptic Malignant Syndrome and Psychotic Illness

    No full text
    corecore