485 research outputs found

    Charge transfer and adhesion in Rh/MgO(001)

    Get PDF
    Ab initio density functional calculations are reported for Rh adlayers on MgO(001) at coverages of 1, 1/2 and 1/8 monolayers. It is shown that charge is transferred from oxide surface to the Rh adatoms. The transfer ranges from 0.06 e to 0.27 e, depending upon adsorption site and coverage. In comparison, transfers of 0.08 e from adatom to surface and 0.32 e surface to adatom are found for monolayer coverages of Mg and O, respectively. With the Rh adatoms, significant charge polarization of both Rh and the surface are also seen, but it is never-the-less found that the adhesion energy is linearly related to the charge transfer, with the most stable adsorption site at any particular coverage being the one at which the charge transfer is a maximum

    Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria

    Get PDF
    We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO2 (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying localized Ce4f charge moving furthest. Several quantification schemes show that the charge starts to become localized at U≈3eV and that the degree of localization reaches a maximum at ∼6eV for LDA+U or at ∼5.5eV for GGA+U. For higher U it decreases rapidly as charge is transferred onto second neighbor O ions and beyond. The localization is never into atomic corelike states; at maximum localization about 80–90% of the Ce4f charge is located on the two nearest neighboring Ce ions. However, if we look at the total atomic charge we find that the two ions only make a net gain of (0.2–0.4)e each, so localization is actually very incomplete, with localization of Ce4f electrons coming at the expense of moving other electrons off the Ce ions. We have also revisited some properties of defect-free ceria and find that with LDA+U the crystal structure is actually best described with U=3–4eV, while the experimental band structure is obtained with U=7–8eV. (For GGA+U the lattice parameters worsen for U>0eV, but the band structure is similar to LDA+U.) The best overall choice is U≈6eV with LDA+U and ≈5.5eV for GGA+U, since the localization is most important, but a consistent choice for both CeO2 and Ce2O3, with and without vacancies, is hard to find

    Spatial solitary-wave optical memory

    Get PDF
    We consider some features of spatial solitary-wave switching in a unidirectional ring cavity that is partially filled with a fast and saturably self-focusing nonlinear medium. Large (part-beam switched) solitary arrays are considered. It is found that prescribed binary patterns may be encoded in the duration of a single cavity transit and subsequently remain stable over thousands of transits. Beam interrupt allows pixels to be switched off in fewer than ten cavity transits. Pixel instabilities on an unpixelated beam are shown to arise from spatial solitary attractive forces and intensity gradients

    Oxygen vacancies versus fluorine at CeO2(111): a case of mistaken identity?

    Get PDF
    We propose a resolution to the puzzle presented by the surface defects observed with STM at the (111) surface facet of CeO2 single crystals. In the seminal paper of Esch et al. [Science 309, 752 (2005)] they were identified with oxygen vacancies, but the observed behavior of these defects is inconsistent with the results of density functional theory (DFT) studies of oxygen vacancies in the literature. We resolve these inconsistencies via DFT calculations of the properties of both oxygen vacancies and fluorine impurities at CeO2(111), the latter having recently been shown to exist in high concentrations in single crystals from a widely used commercial source of such samples. We find that the simulated filled-state STM images of surface-layer oxygen vacancies and fluorine impurities are essentially identical, which would render problematic their experimental distinction by such images alone. However, we find that our theoretical results for the most stable location, mobility, and tendency to cluster, of fluorine impurities are consistent with experimental observations, in contrast to those for oxygen vacancies. Based on these results, we propose that the surface defects observed in STM experiments on CeO2 single crystals reported heretofore were not oxygen vacancies, but fluorine impurities. Since the similarity of the simulated STM images of the two defects is due primarily to the relative energies of the 2p states of oxygen and fluorine ions, this confusion might also occur for other oxides which have been either doped or contaminated with fluorine

    Transformation kinetics of alloys under non-isothermal conditions

    Full text link
    The overall solid-to-solid phase transformation kinetics under non-isothermal conditions has been modeled by means of a differential equation method. The method requires provisions for expressions of the fraction of the transformed phase in equilibrium condition and the relaxation time for transition as functions of temperature. The thermal history is an input to the model. We have used the method to calculate the time/temperature variation of the volume fraction of the favored phase in the alpha-to-beta transition in a zirconium alloy under heating and cooling, in agreement with experimental results. We also present a formulation that accounts for both additive and non-additive phase transformation processes. Moreover, a method based on the concept of path integral, which considers all the possible paths in thermal histories to reach the final state, is suggested.Comment: 16 pages, 7 figures. To appear in Modelling Simul. Mater. Sci. En

    The acceleration and storage of radioactive ions for a neutrino factory

    Full text link
    The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.Comment: Accepted for publication in proceedings of Nufact02, London, 200

    Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    Full text link
    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including the first fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc
    • …
    corecore