1,429 research outputs found

    Haldane Statistics in the Finite Size Entanglement Spectra of Laughlin States

    Full text link
    We conjecture that the counting of the levels in the orbital entanglement spectra (OES) of finite-sized Laughlin Fractional Quantum Hall (FQH) droplets at filling ν=1/m\nu=1/m is described by the Haldane statistics of particles in a box of finite size. This principle explains the observed deviations of the OES counting from the edge-mode conformal field theory counting and directly provides us with a topological number of the FQH states inaccessible in the thermodynamic limit- the boson compactification radius. It also suggests that the entanglement gap in the Coulomb spectrum in the conformal limit protects a universal quantity- the statistics of the state. We support our conjecture with ample numerical checks.Comment: 4.1 pages, published versio

    Bulk-Edge Correspondence in the Entanglement Spectra

    Full text link
    Li and Haldane conjectured and numerically substantiated that the entanglement spectrum of the reduced density matrix of ground-states of time-reversal breaking topological phases (fractional quantum Hall states) contains information about the counting of their edge modes when the ground-state is cut in two spatially distinct regions and one of the regions is traced out. We analytically substantiate this conjecture for a series of FQH states defined as unique zero modes of pseudopotential Hamiltonians by finding a one to one map between the thermodynamic limit counting of two different entanglement spectra: the particle entanglement spectrum, whose counting of eigenvalues for each good quantum number is identical (up to accidental degeneracies) to the counting of bulk quasiholes, and the orbital entanglement spectrum (the Li-Haldane spectrum). As the particle entanglement spectrum is related to bulk quasihole physics and the orbital entanglement spectrum is related to edge physics, our map can be thought of as a mathematically sound microscopic description of bulk-edge correspondence in entanglement spectra. By using a set of clustering operators which have their origin in conformal field theory (CFT) operator expansions, we show that the counting of the orbital entanglement spectrum eigenvalues in the thermodynamic limit must be identical to the counting of quasiholes in the bulk. The latter equals the counting of edge modes at a hard-wall boundary placed on the sample. Moreover, we show this to be true even for CFT states which are likely bulk gapless, such as the Gaffnian wavefunction.Comment: 20 pages, 6 figure

    From Irrational to Non-Unitary: on the Haffnian and Haldane-Rezayi wave functions

    Full text link
    We study the Haffnian and Haldane-Rezayi quantum Hall wave functions and their quasihole excitations by means of their `root configurations', and point out a close connection between these seemingly different states. For both states, we formulate a `generalized Pauli-principle', which allows to count the degeneracies of these states. The connection between these states might elucidate the underlying theory describing the `irrational' Haffnian state.Comment: 4+ pages, published versio

    Rate-Based Transition Systems for Stochastic Process Calculi

    Get PDF
    A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition

    Hyperostotic tympanic bone spicules in domestic and wild animal species

    Get PDF
    Hyperostotic tympanic bone spicules (HTBS), or "mucoperiosteal exostoses" (ME, syn.) are small, globular (>= 1 mm in diameter), mostly stalked and drumstick-like, bony structures, which arise from the inner wall of the tympanic bulla and project into the middle ear cavity. HTBS present as mineral densities inside the tympanic bulla on radiographs or computed tomographic (CT) images. They have previously been referred to as "otoliths" and were thought to represent mineral concretions secondary to otitis media. Recently, it was shown that HTBS actually consist of regularly composed bone tissue, covered by normal middle ear mucosa. So far, HTBS have only extensively been described in dogs, where they occur with a prevalence of up to >45%. A recent study detected ME, most likely representing HTBS, in the tympanic cavities of skeletonised skull bones of African lions. To estimate the occurrence of HTBS in other mammal species, the middle ears of adult animals of 78 different domestic, wild, and zoo species undergoing routine necropsy at the Institute of Veterinary Pathology of the LMU Munich, Germany were examined in the present study. HTBS were found in the tympanic bullae of carnivorous species, such as canids (wolf, fox), and in several large felid species (lion, tiger, leopard, cheetah). In contrast, HTBS were not present in domestic cats (more than to 200 cases), small carnivorous species such as mustelids, nor in any primate, ungulate, ruminant, pig, insectivore, or rodent species. The detectability of HTBS by CT of the tympanic bullae of large felids was demonstrated in an African lion. Histologically, HTBS consisted of mature lamellar bone, covered by periosteum and a partially ciliated, flat epithelium, regularly without any apparent inflammatory alterations. The present study demonstrates that HTBS may frequently occur in large felids and in different canid species. These findings should be taken into account when examining the middle ear, or interpreting bulla radiographs/CT-images of the respective species. However, the factors triggering the development of HTBS remain to be identified

    Intergenerational Challenges in Teaching & Learning

    Get PDF
    This presentation discusses the challenges with teaching and learning students of varying generations. Solutions, including a Strength-based approach to teaching, are provided to give guidance on working with intergenerational students

    It\u27s like we\u27re grasping at anything!

    Get PDF
    This poster was presented at the National Gerontological Association Annual Conference, in Louisville, Kentucky.https://scholarworks.uttyler.edu/fac_posters/1005/thumbnail.jp

    Transverse Emittance Measurement with the Three-Monitor-Method at the CERN Linac4

    Get PDF
    This report evaluates the applicability of the Three-Monitor-Method to determine the transverse emittance of the CERN Linac4 160 MeV H- -beam. The Three-Monitor-Method is a linear formalism allowing to calculate transverse emittance values from beam size measurements at three different positions along a beam line, assuming that the transfer matrix elements between these locations are known. It is planned to build two of these measurement systems, which should operate from 2013/14 immediately behind the exit of the linear accelerator in the dump line and close to the end of the transfer line to the PS Booster synchrotron in the LBE line. At first, the mathematical formalism and the simulation tools are briefly introduced. Then, the method is applied for both measurement lines. Results on measurement precisions and systematic errors are presented. Final conclusions are drawn at the end, and a summary of the equipment to be installed or modified will be given

    Quantum Hall quasielectron operators in conformal field theory

    Full text link
    In the conformal field theory (CFT) approach to the quantum Hall effect, the multi-electron wave functions are expressed as correlation functions in certain rational CFTs. While this approach has led to a well-understood description of the fractionally charged quasihole excitations, the quasielectrons have turned out to be much harder to handle. In particular, forming quasielectron states requires non-local operators, in sharp contrast to quasiholes that can be created by local chiral vertex operators. In both cases, the operators are strongly constrained by general requirements of symmetry, braiding and fusion. Here we construct a quasielectron operator satisfying these demands and show that it reproduces known good quasiparticle wave functions, as well as predicts new ones. In particular we propose explicit wave functions for quasielectron excitations of the Moore-Read Pfaffian state. Further, this operator allows us to explicitly express the composite fermion wave functions in the positive Jain series in hierarchical form, thus settling a longtime controversy. We also critically discuss the status of the fractional statistics of quasiparticles in the Abelian hierarchical quantum Hall states, and argue that our construction of localized quasielectron states sheds new light on their statistics. At the technical level we introduce a generalized normal ordering, that allows us to "fuse" an electron operator with the inverse of an hole operator, and also an alternative approach to the background charge needed to neutralize CFT correlators. As a result we get a fully holomorphic CFT representation of a large set of quantum Hall wave functions.Comment: minor changes, publishe

    Bisimulation of Labeled State-to-Function Transition Systems of Stochastic Process Languages

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, admit multiple transition schemes from states to functions of finite support over general semirings. As such they constitute a convenient modeling instrument to deal with stochastic process languages. In this paper, the notion of bisimulation induced by a FuTS is proposed and a correspondence result is proven stating that FuTS-bisimulation coincides with the behavioral equivalence of the associated functor. As generic examples, the concrete existing equivalences for the core of the process algebras ACP, PEPA and IMC are related to the bisimulation of specific FuTS, providing via the correspondence result coalgebraic justification of the equivalences of these calculi.Comment: In Proceedings ACCAT 2012, arXiv:1208.430
    • …
    corecore