387 research outputs found

    Beta-escin has potent anti-allergic efficacy and reduces allergic airway inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type I hypersensitivity is characterized by the overreaction of the immune system against otherwise innocuous substances. It manifests as allergic rhinitis, allergic conjunctivitis, allergic asthma or atopic dermatitis if mast cells are activated in the respective organs. In case of systemic mast cell activation, life-threatening anaphylaxis may occur. Currently, type I hypersensitivities are treated either with glucocorticoids, anti-histamines, or mast cell stabilizers. Although these drugs exert a strong anti-allergic effect, their long-term use may be problematic due to their side-effects.</p> <p>Results</p> <p>In the course of a routine <it>in vitro </it>screening process, we identified beta-escin as a potentially anti-allergic compound. Here we tested beta-escin in two mouse models to confirm this anti-allergic effect <it>in vivo</it>. In a model of the early phase of allergic reactions, the murine passive cutaneous anaphylaxis model, beta-escin inhibited the effects of mast cell activation and degranulation in the skin and dose-dependently prevented the extravasation of fluids into the tissue. Beta-escin also significantly inhibited the late response after antigen challenge in a lung allergy model with ovalbumin-sensitized mice. Allergic airway inflammation was suppressed, which was exemplified by the reduction of leucocytes, eosinophils, IL-5 and IL-13 in the bronchoalveolar lavage fluid. Histopathological examinations further confirmed the reduced inflammation of the lung tissue. In both models, the inhibitory effect of beta-escin was comparable to the benchmark dexamethasone.</p> <p>Conclusions</p> <p>We demonstrated in two independent murine models of type I hypersensitivity that beta-escin has potent anti-allergic properties. These results and the excellent safety profile of beta-escin suggest a therapeutic potential of this compound for a novel treatment of allergic diseases.</p

    Assessing, comparing and managing risks from energy supply strategies on a regional basis : a case study for Baden-Württemberg

    Get PDF
    In this paper a regional case study within the envisaged joint inter-agency project on "Assessing and Managing Health and Environmental Risks from Energy and Other Complex Industrial Systems" is proposed for Baden-Württemberg. The Institut für Kernenergetik und Energiesysteme (IKE) has performed a number of studies dealing with the evaluation and reduction of emissions and risks of energy systems. So, a very detailed data base is available which can serve as a suitable basis for further investigations related to risk management. Consequently this paper consists of three main sections with emphasis on: - description of research projects carried out by IKE in the field of energy systems and risk evaluations, - description of aims and procedures of an ongoing study on restructuring measures for the energy system in Baden-Württemberg and, - the proposal for a regional case study on risk management in the energy field for Baden-Württemberg

    ISO LWS Spectroscopy of M82: A Unified Evolutionary Model

    Get PDF
    We present the first complete far-infrared spectrum (43 to 197 um) of M82, the brightest infrared galaxy in the sky, taken with the Long Wavelength Spectrometer of the Infrared Space Observatory (ISO). We detected seven fine structure emission lines, [OI] 63 and 145 um, [OIII] 52 and 88 um, [NII] 122 um, [NIII] 57 um and [CII] 158 um, and fit their ratios to a combination starburst and photo-dissociation region (PDR) model. The best fit is obtained with HII regions with n = 250 cm^{-3} and an ionization parameter of 10^{-3.5} and PDRs with n = 10^{3.3} cm^{-3} and a far-ultraviolet flux of G_o = 10^{2.8}. We applied both continuous and instantaneous starburst models, with our best fit being a 3-5 Myr old instantaneous burst model with a 100 M_o cut-off. We also detected the ground state rotational line of OH in absorption at 119.4 um. No excited level OH transitions are apparent, indicating that the OH is almost entirely in its ground state with a column density ~ 4x10^{14} cm^{-2}. The spectral energy distribution over the LWS wavelength range is well fit with a 48 K dust temperature and an optical depth, tau_{Dust} proportional to lambda^{-1}.Comment: 23 pages, 4 figures, accepted by ApJ, Feb. 1, 199

    Analysis of antigen conservation and inactivation of gamma-irradiated avian influenza virus subtype H9N2

    Get PDF
    Avian influenza (AI) A subtype H9N2 virus belongs to Orthomyxoviridae family and causes low-pathogenic disease AI. The use of gamma-irradiated viral antigens has been developed in the production of effective vaccines. In this research, LPAIV H9N2 strain, A/Chicken/IRN/Ghazvin/2001, was multiplied on SPF eggs and irradiated by a Nordian gamma cell instrument. Irradiated and non-irradiated AI virus (AIV) samples were titrated by EID50 method and hemagglutinin (HA) antigen was analyzed by HA test as the WHO pattern method. Infectivity of irradiated virus was determined by egg inoculation method during four blind cultures. The results showed that after increasing the dose of gamma radiation, virus titer gradually decreased. D10 value and optimum dose for complete virus inactivation were calculated by dose/response curve, 3.36 and 29.52 kGy, respectively. In addition, HA antigenicity of gamma-irradiated virus samples from 0 to 30 kGy was not changed. The results of safety test for gamma-irradiated AIV samples showed complete inactivation with gamma ray doses 30 and 35 kGy, without any multiplication on eggs after four blind cultures. According to the results of HA antigen assay and safety test, the gamma-irradiated and complete inactivated AIV subtype H9N2 is a good candidate as an inactivated immunogenic agent for poultry vaccination

    Near-complete genome sequences of multiple genotype 1 African swine fever virus isolates from 2016 to 2018 in Cameroon

    Get PDF
    African swine fever virus has been endemic in Cameroon since 1982. Here, we announce the sequences of Cameroon/2016/C1, Cameroon/2016/C5, Cameroon/2017/C-A2, Cameroon/2018/C02, and Cameroon/2018/CF3, five genotype 1 African swine fever virus genomes collected from domestic pigs between 2016 and 2018

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO
    corecore