47 research outputs found

    Photochemical CO2 conversion on pristine and Mg-doped gallium nitride (GaN): a comprehensive DFT study based on a cluster model approach

    Get PDF
    The photochemical reduction of carbon dioxide (CO2) into methanol is very appealing since it requires sunlight as the only energy input. However, the development of highly selective and efficient photocatalysts is still very challenging. It has been reported that CO2 can be spontaneously activated on gallium nitride (GaN). Moreover, the photocatalytic activity for CO2 conversion into methanol can be drastically enhanced by incorporating a small amount of Mg dopant. In this work, density functional theory (DFT) based on a cluster model approach has been applied to further explore the photocatalytic activity of bare GaN towards CO2 adsorption and conversion. We extended the investigation of Mg-doping replacing one Ga atom with Mg on three different sites and evaluated the consequent effects on the band gaps and CO2 adsorption energies. Finally, we explore different routes leading to the production of methanol and evaluate the catalytic activity of bare GaN by applying the energetic span model (ESM) in order to identify the rate-determining states which are fundamental for suggesting modifications that can improve the photocatalytic activity of this promising material

    d-Glucose Adsorption on the TiO2 Anatase (100) Surface: A Direct Comparison Between Cluster-Based and Periodic Approaches

    Get PDF
    Titanium dioxide (TiO2) has been extensively studied as a suitable material for a wide range of fields including catalysis and sensing. For example, TiO2-based nanoparticles are active in the catalytic conversion of glucose into value-added chemicals, while the good biocompatibility of titania allows for its application in innovative biosensing devices for glucose detection. A key process for efficient and selective biosensors and catalysts is the interaction and binding mode between the analyte and the sensor/catalyst surface. The relevant features regard both the molecular recognition event and its effects on the nanoparticle electronic structure. In this work, we address both these features by combining two first-principles methods based on periodic boundary conditions and cluster approaches (CAs). While the former allows for the investigation of extended materials and surfaces, CAs focus only on a local region of the surface but allow for using hybrid functionals with low computational cost, leading to a highly accurate description of electronic properties. Moreover, the CA is suitable for the study of reaction mechanisms and charged systems, which can be cumbersome with PBC. Here, a direct and detailed comparison of the two computational methodologies is applied for the investigation of d-glucose on the TiO2 (100) anatase surface. As an alternative to the commonly used PBC calculations, the CA is successfully exploited to characterize the formation of surface and subsurface oxygen vacancies and to determine their decisive role in d-glucose adsorption. The results of such direct comparison allow for the selection of an efficient, finite-size structural model that is suitable for future investigations of biosensor electrocatalytic processes and biomass conversion catalysis.</p

    Substrate-emitting ring interband cascade lasers

    Get PDF
    The authors acknowledge the support by the Austrian Science Fund (FWF) projects P26100-N27 (H2N) and NextLite (F4909-N23), and the State of Bavaria. HD acknowledges financial support through an APART fellowship from the Austrian Academy of Sciences.We demonstrate interband cascade lasers fabricated into ring-shaped cavities with vertical light emission through the substrate at a wavelength of λ ≈ 3.7 µm. The out-coupling mechanism is based on a metallized second-order distributed feedback grating. At room-temperature, a pulsed threshold current-density of 0.75 kA/cm2 and a temperature-tuning rate of 0.3 nm/°C is measured. In contrast to the azimuthal polarization of ring quantum cascade lasers, we observe a radial polarization of the projected nearfield of ring interband cascade lasers. These findings underline the fundamental physical difference between light generation in interband and intersubband cascade lasers, offering new perspectives for device integration.Publisher PDFPeer reviewe
    corecore