1,181 research outputs found

    Water transfer to the deep mantle through hydrous, Al-rich silicates in subduction zones

    Get PDF
    Constraining deep-water recycling along subduction zones is a first-order problem to understand how Earth has maintained a hydrosphere over billions of years that created conditions for a habitable planet. The pressure-temperature stability of hydrous phases in conjunction with slab geotherms determines how much H2O leaves the slab or is transported to the deep mantle. Chlorite-rich, metasomatic rocks that form at the slab-mantle interface at 50–100 km depth represent an unaccounted, H2O-rich reservoir in subduction processes. Through a series of high-pressure experiments, we investigated the fate of such chlorite-rich rocks at the most critical conditions for subduction water recycling (5–6.2 GPa, 620–800 °C) using two different natural ultramafic compositions. Up to 5.7 GPa, 740 °C, chlorite breaksdown to an anhydrous peridotite assemblage, and H2O is released. However, at higher pressures and lower temperatures, a hydrous Al-rich silicate (11.5 Å phase) is an important carrier to enable water transfer to the deep mantle for cold subduction zones. Based on the new phase diagrams, it is suggested that the deep-water cycle might not be in secular equilibrium

    Sediment Melts at Sub-arc Depths: an Experimental Study

    Get PDF
    The phase and melting relations in subducted pelites have been investigated experimentally at conditions relevant for slabs at sub-arc depths (T = 600-1050°C, P = 2·5-4·5 GPa). The fluid-present experiments produced a dominant paragenesis consisting of garnet-phengite-clinopyroxene-coesite-kyanite that coexists with a fluid phase at run conditions. Garnet contains detectable amounts of Na2O (up to 0·5 wt%), P2O5 (up to 0·56 wt%), and TiO2 (up to 0·9 wt%) in all experiments. Phengite is stable up to 1000°C at 4·5 GPa and is characterized by high TiO2 contents of up to 2 wt%. The solidus has been determined at 700°C, 2·5 GPa and is situated between 700 and 750°C at 3·5 GPa. At 800°C, 4·5 GPa glass was present in the experiments, indicating that at such conditions a hydrous melt is stable. In contrast, at 700°C, 3·5 and 4·5 GPa, a solute-rich, non-quenchable aqueous fluid was present. This indicates that the solidus is steeply sloping in P-T space. Fluid-present (vapour undersaturated) partial melting of the pelites occurs according to a generalized reaction phengite + omphacite + coesite + fluid = melt + garnet. The H2O content of the produced melt decreases with increasing temperature. The K2O content of the melt is buffered by phengite and increases with increasing temperature from 2·5 to 10 wt%, whereas Na2O decreases from 7 to 2·3 wt%. Hence, the melt compositions change from trondhjemitic to granitic with increasing temperature. The K2O/H2O increases strongly as a function of temperature and nature of the fluid phase. It is 0·0004-0·002 in the aqueous fluid, and then increases gradually from about 0·1 at 750-800°C to about 1 at 1000°C in the hydrous melt. This provides evidence that hydrous melts are needed for efficient extraction of K and other large ion lithophile elements from subducted sediments. Primitive subduction-related magmas typically have K2O/H2O of ∌0·1-0·4, indicating that hydrous melts rather than aqueous fluids are responsible for large ion lithophile element transfer in subduction zones and that top-slab temperatures at sub-arc depths are likely to be 700-900°

    Nonequilibrium fluid-dynamics in the early stage of ultrarelativistic heavy-ion collisions

    Get PDF
    To describe ultrarelativistic heavy-ion collisions we construct a three-fluid hydrodynamical model. In contrast to one-fluid hydrodynamics, it accounts for the finite stopping power of nuclear matter, i.e. for nonequilibrium e ects in the early stage of the reaction. Within this model, we study baryon dynamics in the BNL-AGS energy range. For the system Au+Au we find that kinetic equilibrium between projectile and target nucleons is established only after a time teq CM H 5 fm/c C 2RAu/ÂłCM. Observables which are sensitive to the early stage of the collision (like e.g. nucleon flow) therefore di er considerably from those calculated in the one-fluid model

    Antiflow of nucleons at the softest point of the EoS

    Get PDF
    Report-no: UFTP-492/1999 Journal-ref: Phys.Rev. C61 (2000) 024909 We investigate flow in semi-peripheral nuclear collisions at AGS and SPS energies within macroscopic as well as microscopic transport models. The hot and dense zone assumes the shape of an ellipsoid which is tilted by an angle Theta with respect to the beam axis. If matter is close to the softest point of the equation of state, this ellipsoid expands predominantly orthogonal to the direction given by Theta. This antiflow component is responsible for the previously predicted reduction of the directed transverse momentum around the softest point of the equation of state

    Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis

    Get PDF
    Keywords High-pressure fluids · Whiteschists · U–Pb dating · Oxygen isotopes · Ion microprobe · Metasomatism Introduction The subduction of crustal material to mantle depths and its chemical modification during burial and exhumation contribute to element recycling in the mantle and the formation of new crust through arc magmatism. Crustal rocks that Abstract The Dora-Maira whiteschists derive from metasomatically altered granites that experienced ultrahighpressure metamorphism at ~750 °C and 40 kbar during the Alpine orogeny. In order to investigate the P–T–time–fluid evolution of the whiteschists, we obtained U–Pb ages from zircon and monazite and combined those with trace element composition and oxygen isotopes of the accessory minerals and coexisting garnet. Zircon cores are the only remnants of the granitic protolith and still preserve a Permian age, magmatic trace element compositions and ÎŽ18O of ~10 ‰. Thermodynamic modelling of Si-rich and Si-poor whiteschist compositions shows that there are two main fluid pulses during prograde subduction between 20 and 40 kbar. In Si-poor samples, the breakdown of chlorite to garnet + fluid occurs at ~22 kbar. A first zircon rim directly overgrowing the cores has inclusions of prograde phlogopite and HREE-enriched patterns indicating zircon growth at the onset of garnet formation. A second main fluid pulse is documented close to peak metamorphic conditions in both Si-rich and Si-poor whiteschist when talc + kyanite react to garnet + coesite + fluid. A second metamorphic overgrowth on zircon with HREE depletion was observed in the Si-poor whiteschists, whereas a single metamorphic overgrowth capturing phengite and talc inclusions was observed in the Si-rich whiteschists. Garnet rims, zircon rims and monazite are in chemical and isotopic equilibrium for oxygen, demonstrating that they all formed at peak metamorphism at 35 Ma as constrained by the age of monazite (34.7 ± 0.4 Ma) and zircon rims (35.1 ± 0.8 Ma). The prograde zircon rim in Si-poor whiteschists has an age that is within error indistinguishable from the age of peak metamorphic conditions, consistent with a minimum rate of subduction of 2 cm/year for the Dora-Maira unit. Oxygen isotope values for zircon rims, monazite and garnet are equal within error at 6.4 ± 0.4 ‰, which is in line with closed-system equilibrium fractionation during prograde to peak temperatures. The resulting equilibrium Δ18Ozircon-monazite at 700 ± 20 °C is 0.1 ± 0.7 ‰. The in situ oxygen isotope data argue against an externally derived input of fluids into the whiteschists. Instead, fluidassisted zircon and monazite recrystallisation can be linked to internal dehydration reactions during prograde subduction. We propose that the major metasomatic event affecting the granite protolith was related to hydrothermal seafloor alteration post-dating Jurassic rifting, well before the onset of Alpine subduction

    Surgical Strategies in Childhood Craniopharyngioma

    Get PDF
    Craniopharyngiomas are biologically benign lesions (WHO Grade 1) of the sellar and suprasellar region, associated with a serious morbidity. About 50% of these tumors become clinically apparent during childhood. Clinical symptoms include headaches, chiasm syndrome, hydrocephalus, pituitary insufficiencies, and obesity. Growth arrest is a typical symptom in children. The treatment of craniopharyngiomas includes surgery as well as radiotherapy. The goal of surgery varies according to the tumor location and extension and may range from complete resection to biopsy. Surgical complications are well known and cause constant evaluation of surgical strategies. Diencephalic obesity is related to surgical manipulation of hypothalamic tissue. Therefore, a classification system for craniopharyngiomas based on preoperative MRI is suggested by the authors. Recurrences are frequent in craniopharyngiomas, even after complete or gross-total resection. Radiotherapy is therefore recommended to patients with incomplete resections. However, the ideal time for radiotherapy after surgery is under discussion. The treatment of craniopharyngiomas requires an interdisciplinary and multimodal approach. Each patient should receive an individually tailored treatment. Surgically, different approaches as well as different degrees of resection can be considered, depending on tumor location and tumor extension

    Collaborative Business Process Management - A Literature-based Analysis of Methods for Supporting Model Understandability

    Get PDF
    Due to the growing amount of cooperative business scenarios, collaborative Business Process Management (cBPM) has emerged. The increased number of stakeholders with minor expertise in process modeling leads to a high relevance of model understandability in cBPM contexts. Despite extensive works in the research fields of cBPM and model understandability in BPM, there is no analysis and comprehensive overview of methods supporting process model understandability in cBPM scenarios. To address this research gap, this paper presents the results of a literature review. The paper identifies concepts for supporting model understandability in BPM, provides an overview of methods implementing these concepts, and discusses the methods’ applicability in cBPM. The four concepts process model transformation, process model visualization, process model description, and modeling support are introduced. Subsequently, 69 methods are classified and discussed in the context of cBPM. Results contribute to revealing existing academic voids and can guide practitioners in cBPM scenarios
    • 

    corecore