9,668 research outputs found

    Optical signature of the pressure-induced dimerization in the honeycomb iridate α\alpha-Li2_2IrO3_3

    Get PDF
    We studied the effect of external pressure on the electrodynamic properties of α\alpha-Li2_2IrO3_3 single crystals in the frequency range of the phonon modes and the Ir dd-dd transitions. The abrupt hardening of several phonon modes under pressure supports the onset of the dimerized phase at the critical pressure PcP_c=3.8 GPa. With increasing pressure an overall decrease in spectral weight of the Ir dd-dd transitions is found up to PcP_c. Above PcP_c, the local (on-site) dd-dd excitations gain spectral weight with increasing pressure, which hints at a pressure-induced increase in the octahedral distortions. The non-local (intersite) Ir dd-dd transitions show a monotonic blue-shift and decrease in spectral weight. The changes observed for the non-local excitations are most prominent well above PcP_c, namely for pressures ≥\geq12 GPa, and only small changes occur for pressures close to PcP_c. The profile of the optical conductivity at high pressures (∼\sim20 GPa) appears to be indicative for the dimerized state in iridates.Comment: 10 pages, 6 figures; accepted for publication in Phys. Rev.

    Electron tunneling into a quantum wire in the Fabry-Perot regime

    Get PDF
    We study a gated quantum wire contacted to source and drain electrodes in the Fabry-Perot regime. The wire is also coupled to a third terminal (tip), and we allow for an asymmetry of the tip tunneling amplitudes of right and left moving electrons. We analyze configurations where the tip acts as an electron injector or as a voltage-probe, and show that the transport properties of this three-terminal set-up exhibit very rich physical behavior. For a non-interacting wire we find that a tip in the voltage-probe configuration affects the source-drain transport in different ways, namely by suppressing the conductance, by modulating the Fabry-Perot oscillations, and by reducing their visibility. The combined effect of electron electron interaction and finite length of the wire, accounted for by the inhomogeneous Luttinger liquid model, leads to significantly modified predictions as compared to models based on infinite wires. We show that when the tip injects electrons asymmetrically the charge fractionalization induced by interaction cannot be inferred from the asymmetry of the currents flowing in source and drain. Nevertheless interaction effects are visible as oscillations in the non-linear tip-source and tip-drain conductances. Important differences with respect to a two-terminal set-up emerge, suggesting new strategies for the experimental investigation of Luttinger liquid behavior.Comment: 27 pages, 10 figure

    Noise in Electron Devices

    Get PDF
    Contains research objectives.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 36-039-AMC-03200(E

    Classical and quantum dynamics of a spin-1/2

    Get PDF
    We reply to a comment on `Semiclassical dynamics of a spin-1/2 in an arbitrary magnetic field'.Comment: 4 pages, submitted to Journal of Physics

    Computer simulation of crystallization kinetics with non-Poisson distributed nuclei

    Full text link
    The influence of non-uniform distribution of nuclei on crystallization kinetics of amorphous materials is investigated. This case cannot be described by the well-known Johnson-Mehl-Avrami (JMA) equation, which is only valid under the assumption of a spatially homogeneous nucleation probability. The results of computer simulations of crystallization kinetics with nuclei distributed according to a cluster and a hardcore distribution are compared with JMA kinetics. The effects of the different distributions on the so-called Avrami exponent nn are shown. Furthermore, we calculate the small-angle scattering curves of the simulated structures which can be used to distinguish experimentally between the three nucleation models under consideration.Comment: 14 pages including 7 postscript figures, uses epsf.sty and ioplppt.st

    High-pressure versus isoelectronic doping effect on the honeycomb iridate Na2_2IrO3_3

    Get PDF
    We study the effect of isoelectronic doping and external pressure in tuning the ground state of the honeycomb iridate Na2_2IrO3_3 by combining optical spectroscopy with synchrotron x-ray diffraction measurements on single crystals. The obtained optical conductivity of Na2_2IrO3_3 is discussed in terms of a Mott insulating picture versus the formation of quasimolecular orbitals and in terms of Kitaev-interactions. With increasing Li content xx, (Na1−x_{1-x}Lix_x)2_2IrO3_3 moves deeper into the Mott insulating regime and there are indications that up to a doping level of 24\% the compound comes closer to the Kitaev-limit. The optical conductivity spectrum of single crystalline α\alpha-Li2_2IrO3_3 does not follow the trends observed for the series up to x=0.24x=0.24. There are strong indications that α\alpha-Li2_2IrO3_3 is less close to the Kitaev-limit compared to Na2_2IrO3_3 and closer to the quasimolecular orbital picture. Except for the pressure-induced hardening of the phonon modes, the optical properties of Na2_2IrO3_3 seem to be robust against external pressure. Possible explanations of the unexpected evolution of the optical conductivity with isolectronic doping and the drastic change between x=0.24x=0.24 and x=1x=1 are given by comparing the pressure-induced changes of lattice parameters and the optical conductivity with the corresponding changes induced by doping.Comment: 12 pages, 6 figures, accepted for publication in Phys. Rev.

    Tunneling Density of States of the Interacting Two-Dimensional Electron Gas

    Full text link
    We investigate the influence of electron--electron interactions on the density of states of a ballistic two--dimensional electron gas. The density of states is determined nonperturbatively by means of path integral techniques allowing for reliable results near the Fermi surface, where perturbation theory breaks down. We find that the density of states is suppressed at the Fermi level to a finite value. This suppression factor grows with decreasing electron density and is weakened by the presence of gates.Comment: 4 pages, 2 figures; slightly shortened version published in PR

    The convergence of the ab-initio many-body expansion for the cohesive energy of solid mercury

    Full text link
    A many-body expansion for mercury clusters of the form E = \sum_{i<j}\Delta \epsilon_{ij} + \sum_{i<j<k}\Delta \epsilon_{ijk} + ... \quad, does not converge smoothly with increasing cluster size towards the solid state. Even for smaller cluster sizes (up to n=6), where van der Waals forces still dominate, one observes bad convergence behaviour. For solid mercury the convergence of the many-body expansion can dramatically be improved by an incremental procedure within an embedded cluster approach. Here one adds the coupled cluster many-body electron correlation contributions of the embedded cluster to the bulk HF energy. In this way we obtain a cohesive energy (not corrected for zero-point vibration) of 0.79 eV in perfect agreement with the experimental value.Comment: 10 pages, 3 figures, accepted PR

    Jahn-Teller Distortions and the Supershell Effect in Metal Nanowires

    Full text link
    A stability analysis of metal nanowires shows that a Jahn-Teller deformation breaking cylindrical symmetry can be energetically favorable, leading to stable nanowires with elliptic cross sections. The sequence of stable cylindrical and elliptical nanowires allows for a consistent interpretation of experimental conductance histograms for alkali metals, including both the shell and supershell structures. It is predicted that for gold, elliptical nanowires are even more likely to form since their eccentricity is smaller than for alkali metals. The existence of certain metastable ``superdeformed'' nanowires is also predicted

    Electrodynamics of Media

    Get PDF
    Contains reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E
    • …
    corecore