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A. SATURATION POWER IN CO 2 LASERS

If we apply the formula for the saturation power of a two-level systeml to the case
-3

of CO 2 , using for the relaxation time of the upper level the value 10 sec, for the lower
-4

level 10 - 4 , and t sp= 5 sec, we obtain a value that is too small compared with the experi-

mentally observed value by a factor of 500 or 100, the value depending on the experiment

that is used for comparison. Bridges and Kogelnik 2 quote 100 w/cm 2 , Miles 3 quotes

60 w/cm 2 , and Hotz 4 quotes 22 w/cm 2

Since the CO 2 laser is not a two-level system, in that the different J levels

relax into the lasing vibrational-rotational transition, it may be argued that many

levels participate in the lasing action. Hotz and Austin,4 have tried to explain

the discrepancy by assuming that 50 levels participate. This is an unreasonably

large number of levels.

In this report, we determine the cross relaxation of the rotational levels, by

solving in closed form the rate equations in the limit when the vibrational relaxa-

tion times are long compared with the rotational relaxational times, a situation that

holds in practice. It may be shown that the number of levels participating in

CO 2 laser action is of the order of 15. Hence the discrepancy between the the-

oretically predicted value for the saturation power and the one observed experi-

mentally cannot be explained solely by assuming cross relaxation of the rotational

levels. We propose that the discrepancy can be explained by further assuming spa-

tial diffusion of the unused populations into the laser beam, and we estimate the

magnitude of this effect.

We denote the number density of particles in the kth rotational level of the upper

0001 vibrational level by Nk, and the population density of the jth rotational level in the

lower 1000 vibrational level by nk. The rate equations are then
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dNdt = Ru - N1 u - 1N1 + F N - W(N1-gn)
J IJ

dN 2
R N - rU N + E Fu.N. (1)

-dt 2 N 2 2 j2 2 2(1)

j Jdn1 I

dn 2 2 =r n fz + F 2 n (2)

dt 2 Y - nY2 - j 2 n2 + 2jn (2)
j j

u thHere the quantities R k and r give the rate of pumping into the kt h upper rotational level

and jth lower rotational level, respectively. The vibrational relaxation constants yk

may be assumed to be different in all levels, but in general are much smaller

than the constants of cross relaxation rjk. The superscripts u and f denote the

upper and lower vibrational levels. The rate of induced transitions is given

by

2
W 2 (3)

8w t hvAv
sp

where I is the intensity of the lasing radiation, and tsp is the spontaneous transition

time. In order to find a simple expression for the gain, we define the determinants

-u r u  u u ru
j 12 13 1M

r u  (u ru u u

r 2321j 23 2M

Au  r 3 32 - 3+ r r u
31 32 3 3M

u u u .u

rM1 M2 rM3 M r

(4)
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and

(u Uu u  u

+1 ru2 r ru
Sj2 23 24 2M

u  u  u u Fu

= 4 2  43 - 4j j4 4 M

u u Q u U
FM2 FM 3  M4 M +  jM

(5)

Au is the determinant describing the relaxation among the upper rotational levels in the

absence of a lasing field. Au is the subdeterminant obtained by removing the first row

and column from Au. Corresponding quantities can be defined for the lower level. If

we define the quantity Ku by the determinant obtained by replacing the first column of

Au by the pumping rates and introduce a corresponding quantity K for the lower set of

levels, we finally have the weighted difference between the populations, which is propor-

tional to the gain:

-K + gK Au
N gn = u e (6)

N 1 g u - W(AUL Y+gA Au)

The lasing power appears only in the denominator. The saturation power is defined by

that value of intensity which reduces the right-hand side of (6) to one-half its value for

zero lasing power.

8-rr2tsp hvAv

P 8 2 Au A . (7)
s 2 Au A

We shall now evaluate the saturation power in the limit when the vibrational relaxa-

tion rates are slow compared with the rotational cross-relaxation rates. Expanding the

determinant Au to first order in the vibrational relaxation rate, we have

Au u - (8)
k

where k is the cofactor of the k t h diagonal term, with y set equal to 0 forku
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all j. From the principle of detailed balance, we have

eF u . = Ne u
NJ ij = i j (9)j 1] 1 ji(

Using this fact and dividing all columns by their corresponding equilibrium number den-

sity, we can show that the cofactors are all proportional to a common number Pu

e

u J u
S. (10)
SI Ne O0

k k

Now note that since the determinants A u and A are of first order in the vibrational

relaxational times, we need not go farther than zero order to evaluate Au and A . These

to zero order are

Ne
u 1 u

A P (11)
l Ne o
k

When these expressions are introduced into the saturation power density, we obtain

u Ne e

i ii j inj
8r 2t hvAv e e

sp N 1  n l
s 2 ue (1 2)

x 1yuNe Ly n.
2 i N j

g +N e n e
N1 n l

u u e e
Assuming yi = y- and yj = y ,namely that all relaxation rates within one level are the

same, we find that the saturation power density contains the vibrational relaxation times

multiplied by an effective number of upper and lower levels.

00

eI nkk even
n1 e (13)

n

00

Z Ne

k odd
N1 e (14)

N

How large are these? Considering the lower level as an example, we have

QPR No. 90



(X. ELECTRODYNAMICS OF MEDIA)

0o he
z (2J+1) exp (-BJ(J+1) KT /

J even (15)
1 h(c

(2Jl+l) exp(-BJ1 (J +1) 7T

We may approximate the summations by integrations, noting, however, that the lower

level has only even terms. In this way one obtains

n, KT (16)
1 hc\

2Bhc(2Jl+1) exp(-BJ1(Jl + 1) KT

Assume next that the level of interest is the one with the largest population density. The

J number of this level is given by

Bhc 2
KT (2J 1 +1)2"

When we introduce into these expressions the corresponding numbers for CO 2, we find

n'= 14. 3 (17)

N' = 14. 7. (18)

Hence, only 15 or so levels are participating in the lasing action. Introducing the pre-

viously mentioned values for yu and y into Eq. 12, we obtain for the saturation power

P = 5. 8 w/cm 2 . (19)

This value is still considerably smaller than the experimentally observed values. We

have to look, therefore, for other mechanisms that could account for the observations.

The problem of solving for spatial diffusion of the population densities in the

various rotational levels under the influence of a lasing field is prohibitively dif-

ficult. One may make some reasonable approximations and assumptions, however,

which lead to an estimate of the magnitude of this effect, if the rotational levels

are coupled very tightly to the lasing level. Their population densities are reduced

in the upper level and increased in the lower level, in the ratio of their equilibrium

densities. We shall also assume, for simplification, that only 15 levels participate,

all of which have the same population density. Furthermore, we shall consider a

case of a very thin laser beam of uniform intensity, so that we may assume that

the population densities within the laser beam are spatially uniform. Under such

an assumption, we need to solve the diffusion problem only in the region surrounding
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the laser beam. As the population of the upper vibrational level decreases within the

laser beam, the particles situated outside the beam diffuse into the beam and partially

compensate for the decrease. The diffusion of a single species is governed by the equa-

tion

D V2N - yUN + R u = 0, (20)

where D is the diffusion constant (cm 2/sec). The solution of this equation is a modified

Bessel function having the asymptotic behavior

2 2
K o(X) -ln . (21)

The rate at which particles are supplied to the core is given by

N -
u

aN Y 2
-D-- = -D 2 (22)ar 2 n 2 r '

1T

which leads to an equivalent source S per unit volume that should be added to the rate

equation of the particles inside the laser beam:

R u

u

S = -D 2 2. (23)
in 

p

We see that the effect of diffusion in this simple case is to supplement the rate constant

by vibrational relaxations, thereby replacing it by

u' u 2D 1
S= Y + 2 2 (24)

p In

YP /Y/D

Furthermore, the source too is modified:

+2 u n 2 (25)

p ypin

The main interest is in the relaxation constant, however, because the saturation

parameter depends upon the relaxation constant and not on the pumping rate. When

reasonable numbers and beam diameters are introduced into these expressions, we
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find for the net effective vibrational relaxation rate of the upper level

u' 3 -1
y =3.5 X 10 sec , (26)

and of the lower level

' 4 -1
y = 1. 25 X 10 sec . (27)

When the geometry of the Hotz experiment is taken into account, we find

P = 14 w/cm 2 . (28)

For Bridges' experiment, we find

P = 21 w/cm 2 . (29)
s

We note that the spatial diffusion changes appreciably the saturation parameter from the

one that was obtained when diffusion is disregarded. In the past, diffusion was not con-

sidered an important contributor to the saturation parameter. This was mainly due to

the fact that atomic and ionic lasers have relaxation rates of the lasing levels that are

considerably larger than those of molecular lasers. In those cases, diffusion rates are

certainly negligible. On the other hand, the relaxation rates of the vibrational levels

for CO are relatively low, and hence diffusion can play an important role. This will

be true presumably for other molecular lasers as well.

C. P. Christensen, Jr., H. A. Haus
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B. THEORY AND EXPERIMENT OF ROTATIONAL CROSS

RELAXATION IN CO 2 LASER

1. Introduction

A study of the coupling between the rotational lines of two lasing vibrational levels

in the CO 2 laser has been undertaken in an effort to determine the rotational relaxation
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times. This project involves passing a low-power laser that is tunable to several
J transitions through a five-pass laser amplifier simultaneously with a high-power laser
that is tunable to a single (different) line, and observing the gain profile as a function of
the power of the single line.

2. Theory

The time variation of the population densities of the set of quantum levels are
1described as

where p v(t) is the respective density matrix element. Conservation of energy requires

e e
vv v = p XX X

Multiplying (1) and (2) by

total number density

Nk(t) = Ni(t) Fik
i

the total number of molecules present yields in terms of the

- Nk(t) rki + Rk (3

NeF = NeFX v v v'

where a source term R k external to the subsystem that is being considered has been

included. Furthermore, in this treatment we shall incorporate a saturating term on

the saturating line that will have a dependence on the nondegenerate population inversion

of that level, while all other terms will be determined solely by the relaxation among
themselves. In equilibrium the left-hand side of (3) is zero, and by considering K levels
in addition to the saturating level in each of the upper and lower vibrational levels, this

analysis yields a set of equations:

s s skks k

u u ru ru
Nsk' - Nk k' k ks

kfk'

Nu
Ss-P

u
gs

rkk +
k#k'

N
S = -R u

Ss
s

(Nu Fkk = -R
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N u

s s k ks N + P

k k (gs

N
s =-R

f s
gs

NT -N f + + rkk + (N _ f -R's sk' kL ks Zk j kk k' k'k k
kfkl k kl

where the g are the appropriate degeneracy factors.

and the relaxation rates obey the relations

Also, the equilibrium densities

u Fu = Nu u  uNuT =NU 7  =X xv v v
e e

N f r =NT f f
e e

Xu u
e

N F r a
e

where the first equality of (9) follows from (4) and (10), and the last equality

lows from the assumption that all rotational levels in a vibrational state relax

rium under identical collision conditions.

Solving the K equations represented by (6) in terms of N u yields a matrix

upper state of the form

(9) fol-

equilib-

for the

u

12

Fu

1K

F
u

21
Fu

31
u
K1

r +
s

Tu
2K - K+K k*K

s

Tu]KK

Nu
N 1

Nu
K

u uNu ru - R
-NuT -Rs s2 2

NU u
s sK K

(11)

Multiplying

Ne/Ne, and
2 22

all of the terms in the first column by Ne/NI, in

so forth reduces (11) to

the second column by
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N
su

y -R

s

N
s u

Ne
S

-R 2

uu
a +Ky

N

By Cram6r's rule, (12) can be solved for each of the Nk.

e s
N k = N k N e

s

1
- +

Rk( i)
(13)

+a 1)(+( +

By a study of the equilibrium equations,
u

pumping rates, Rk, equal to each other,

level. Under this assumption, we have

it can be seen that it is necessary to set the
u u

Rk = R , and likewise for the lower vibrational

N u  R u

N = N u + 
k k e N uu u+ uu+

e No + 1 yu(p +1)

Here Nu is the equilibrium density of the upper saturating level, and
0

U
u a

After modifying (5),

Nu Nu
s u u u Nk

u (a +Ky) + y u
Ns k Nk

o e

Nu
s

u
gs

s us = -Rs
u

gs
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Ne
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au+ Ky u

Ne
2

Y
eN1

u

e
Ne1

u

e
1

N
s u

N e - Rk
Ns
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au +Ky U

Ne
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and inserting (14) into (16), we attain for the upper state

u

+ 'u u +
Nus

o

K- uK
P f u_ / K

NU +N = -R +1 ,s g s o u+ 1 /

and similarly for the lower state

Xu P +K K )+
Nu + Is

P7

g

s- .+ 1K

Defining

T u , u, + K K
pu, f +1

and simultaneously solving (17) and (18), yields

uRu 1o K+ K + R (lR 1+

pu+1 o +

JK u KR 1+ K + R (1+-+K

L p + 1 o u+ 1

The net gain coefficient for a rotational transition between the upper vibrational

level, 1, and the lower vibrational level, 2, is given by

aJ- (n2/2
J-1 J

16r 3 c 3 [JK K1 J2

3hAvD 1 J-12 12 gJ gj

for a Doppler-broadened laser, where JK12 is the matrix element of the transition,

J being the lower state rotational quantum number,
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2 2kT 1/2
AVD 1 2 M In2

1 2D
J-1 J

the degeneracy factor gj = (2J+1), and M is the molecular mass. Letting N = N2

and NU
s
= N 1

J -1
o

and using (22) and (23), we have an expression for the P-transition gain

on the saturating line, Jo,

(23)

u (R 1+
o pu+ 1

u u
Y k

NU
S

0

'Y

N
s

yB
/Tuk IN

s

k u+

NU gs so o

Y Tk
+ P

s gs

By the same notation, if Nk =
k

Nu
= JZ g

1J-12 gJ-1

N and N = N , the gain of the P(J) transition is21IJ-l

N
k_

u N
N N

s s
O O

1 u K yT 1
2J - 1 o +1 N (u+1)

yUTU yIT2

Nu
N N

s s
0 0

N u  Nf
e 2J + 1 e-1 1+ (2J

N (1+P )(2J+l)N

JP

4J 2 - 1
o(y uu

+ +
Ng,

O

Nf u TU
e 1 K\ y

N1 2J + 1 R 1  Nu
e s + 1

o

ss i sog s

Ru RJ
yu(P u+1) 2J - 1 IY + 1) 2J + 1

(25)
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Jo -1 2 jo

u Tu
K k

pu+ 1 N u

s o

J

(2J +1)
0

(24)

(Z)

F

u K 1(1 K 2o 1
R 1+ +R o0 u+ 1 0 + 1 (1+PU)(2J-1)p 3 i
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where

S8 3h r2kT] K12 '

and P is related to the incident flux density, I, by

3X 1 I
S8rhc t 2ro" (26)

spont

Taking the limit as P goes to infinity and looking at the ratio of gains on the Jth line

to that on the L th line results in

1 exp FBu _ (( 2) ( ) I exp B (2_ )
al 2 (J) 1 + P \ /01 + P [ kTj

a 12(L) 
e x p Bu h ((J2-L2 (J-L) 1 e x p B +(J-L)

1+ pU u kT1

(27)

P P
where all terms are determinable except Yr - -, under the assumption that the

a a
rotation relaxation rate is the same for the upper and lower levels. With increasing

saturating power, the gain on each line decreases in approximately the same fashion,

until it asymptotically reaches a constant as the power goes to infinity. From an experi-

mental plot of gain against power for the different P transitions we can thereby deter-

mine the inverse rotational relaxation time, y, since all other parameters in (27) are

determinable from other experiments or are known physical constants.

3. Experimental Results

With the high-power laser on the P(18) transition and its power varied by means of a

pair of polarizers, and the probe laser tunable to P(16), P(20), P(22), and P(24) the gain

versus saturating power curve (Fig. X-l) was obtained. From a comparison of the leveling-

off gains of the different P transitions we have determined 3 a Trot of between 60 nsec and
u 2 rot

180 nsec, for a Ti b 1 msec Ti b = 0.1 msec. The variation has probably been most se-

verely affected by the failure of the assumption that we were sufficiently saturating P(18)

to have reached gains on the other lines relatively independent of the saturating power.

H. Granek
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