8,085 research outputs found

    Anomalous Suppression of Valley Splittings in Lead Salt Nanocrystals without Inversion Center

    Full text link
    Atomistic sp3d5s* tight-binding theory of PbSe and PbS nanocrystals is developed. It is demonstrated, that the valley splittings of confined electrons and holes strongly and peculiarly depend on the geometry of a nanocrystal. When the nanocrystal lacks a microscopic center of inversion and has T_d symmetry, the splitting is strongly suppressed as compared to the more symmetric nanocrystals with O_h symmetry, having an inversion center.Comment: 5 pages, 4 figures, 1 tabl

    To Fulfil Promises is To Die: A Study of Gatotkaca Falls in Javanese Shadow Puppet Canon

    Get PDF
    Bharatayudha is the main source in wayang (shadow puppet) performances. This is very interesting to study because the events of the war which in Indian stories are very cruel, sadistic, after becoming a puppet show are very different. The hero or importans figures death is not caused by the violence of the weapon, but by someones promise. This study aims to understand the bharatayudha war in Javanese society. Data was collected by observing the performance of the play Gatutkaca Fall staged by a famous puppeteer, Manteb Sudarsono. This study uses qualitative methods to present data descriptively using a critical discourse analysis (CDA) approach. This research shows that the bharatayudha war according to Javanese society is not understood as a physical war, but as a means of fulfilling the promises of heroes or important figures. Gatutkacas death was not due to the effectiveness of Karnas Kuntawijayadanu weapon, but because of a promise made by Kalabendana, ie Gatutkacas uncle. This study suggests further research on other Bharatayudha serial plays and other puppeteers to get a more comprehensive picture of the Baratayudha play in wayang performances

    Interaction of intense vuv radiation with large xenon clusters

    Full text link
    The interaction of atomic clusters with short, intense pulses of laser light to form extremely hot, dense plasmas has attracted extensive experimental and theoretical interest. The high density of atoms within the cluster greatly enhances the atom--laser interaction, while the finite size of the cluster prevents energy from escaping the interaction region. Recent technological advances have allowed experiments to probe the laser--cluster interaction at very high photon energies, with interactions much stronger than suggested by theories for lower photon energies. We present a model of the laser--cluster interaction which uses non-perturbative R-matrix techniques to calculate inverse bremsstrahlung and photoionization cross sections for Herman-Skillman atomic potentials. We describe the evolution of the cluster under the influence of the processes of inverse bremsstrahlung heating, photoionization, collisional ionization and recombination, and expansion of the cluster. We compare charge state distribution, charge state ejection energies, and total energy absorbed with the Hamburg experiment of Wabnitz {\em et al.} [Nature {\bf 420}, 482 (2002)] and ejected electron spectra with Laarmann {\em et al.} [Phys. Rev. Lett. {\bf 95}, 063402 (2005)]

    Orientation and Related Buoyancy Effects in Low-velocity Flow Boiling

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73459/1/j.1749-6632.2009.04081.x.pd

    Criteria for Approximating Certain Microgravity Flow Boiling Characteristics in Earth Gravity

    Full text link
    The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying ±5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20°C; heat flux varied over 4-8W/cm 2 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73628/1/j.1749-6632.2002.tb05926.x.pd

    Bardeen-Petterson effect and the disk structure of the Seyfert galaxy NGC 1068

    Get PDF
    VLBA high spatial resolution observations of the disk structure of the active galactic nucleus NGC 1068 has recently revealed that the kinematics and geometry of this AGN is well characterized by an outer disk of H2O maser emission having a compact milliarcsecond (parsec) scale structure, which is encircling a thin rotating inner disk surrounding a ~10^7 M_\sun compact mass, likely a black hole. A curious feature in this source is the occurrence of a misalignment between the inner and outer parts of the disk, with the galaxy's radio jet being orthogonal to the inner disk. We interpret this peculiar configuration as due to the Bardeen-Petterson effect, a general relativistic effect that warps an initially inclined (to the black hole equator) viscous disk, and drives the angular momentum vector of its inner part into alignment with the rotating black hole spin. We estimate the time-scale for both angular momenta to get aligned as a function the spin parameter of the Kerr black hole. We also reproduce the shape of the parsec and kiloparsec scale jets, assuming a model in which the jet is precessing with a period and aperture angle that decrease exponentially with time, as expected from the Bardeen-Petterson effect.Comment: 12 pages, 3 figures, accepted for publication in The Astrophysical Journa

    An empirical test for cellular automaton models of traffic flow

    Full text link
    Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do not reproduce even qualitatively the most important empirical observations, 2) models that are on a macroscopic level in reasonable agreement with the empirics, and 3) models that reproduce the empirical data on a microscopic level as well. Our results are not only relevant for applications, but also shed new light on the relevant interactions in traffic flow.Comment: 28 pages, 36 figures, accepted for publication in PR

    Thermal emission spectroscopy of the middle atmosphere

    Get PDF
    The general objective of this research is to obtain, via remote sensing, simultaneous measurements of the vertical distributions of stratospheric temperature, ozone, and trace constituents that participate in the catalytic destruction of ozone (NO(sub y): NO, NO2, NO3, HNO3, ClONO2, N2O5, HNO4; Cl(sub x): HOCl), and the source gases for the catalytic cycles (H2O, CH4, N2O, CF2Cl2, CFCl3, CCl4, CH3Cl, CHF2Cl, etc.). Data are collected during a complete diurnal cycle in order to test our present understanding of ozone chemistry and its associate catalytic cycles. The instrumentation employed is an emission-mode, balloon-borne, liquid-nitrogen-cooled Michelson interferometer-spectrometer (SIRIS), covering the mid-infrared range with a spectral resolution of 0.020 cm(exp -1). Cryogenic cooling combined with the use of extrinsic silicon photoconductor detectors allows the detection of weak emission features of stratospheric gaseous species. Vertical distributions of these species are inferred from scans of the thermal emission of the limb in a sequence of elevation angles. The fourth SIRIS balloon flight was carried out from Palestine, Texas on September 15-16, 1986 with 9 hours of nighttime data (40 km). High quality data with spectral resolution 0.022 cm(exp -1), were obtained for numerous limb sequences. Fifteen stratospheric species have been identified to date from this flight: five species from the NO(sub y) family (HNO3, NO2, NO, ClONO2, N2O5), plus CO2, O3, H2O, N2O, CH4, CCl3F, CCl2F2, CHF2Cl, CF4, and CCl4. The nighttime values of N2O5, ClONO2, and total odd nitrogen have been measured for the first time, and compared to model results. Analysis of the diurnal variation of N2O5 within the 1984 and 1986 data sets, and of the 1984 ClONO2 measurements, were presented in the literature. The demonstrated ability of SIRIS to measure all the major NO(sub y) species, and therefore to determine the partitioning of the nitrogen family over a continuous diurnal cycle, is a powerful tool in the verification and improvement of photochemical modeling
    • …
    corecore