175 research outputs found
Heat Conduction Process on Community Networks as a Recommendation Model
Using heat conduction mechanism on a social network we develop a systematic
method to predict missing values as recommendations. This method can treat very
large matrices that are typical of internet communities. In particular, with an
innovative, exact formulation that accommodates arbitrary boundary condition,
our method is easy to use in real applications. The performance is assessed by
comparing with traditional recommendation methods using real data.Comment: 4 pages, 2 figure
Improving information filtering via network manipulation
Recommender system is a very promising way to address the problem of
overabundant information for online users. Though the information filtering for
the online commercial systems received much attention recently, almost all of
the previous works are dedicated to design new algorithms and consider the
user-item bipartite networks as given and constant information. However, many
problems for recommender systems such as the cold-start problem (i.e. low
recommendation accuracy for the small degree items) are actually due to the
limitation of the underlying user-item bipartite networks. In this letter, we
propose a strategy to enhance the performance of the already existing
recommendation algorithms by directly manipulating the user-item bipartite
networks, namely adding some virtual connections to the networks. Numerical
analyses on two benchmark data sets, MovieLens and Netflix, show that our
method can remarkably improve the recommendation performance. Specifically, it
not only improve the recommendations accuracy (especially for the small degree
items), but also help the recommender systems generate more diverse and novel
recommendations.Comment: 6 pages, 5 figure
How to project a bipartite network?
The one-mode projecting is extensively used to compress the bipartite
networks. Since the one-mode projection is always less informative than the
bipartite representation, a proper weighting method is required to better
retain the original information. In this article, inspired by the network-based
resource-allocation dynamics, we raise a weighting method, which can be
directly applied in extracting the hidden information of networks, with
remarkably better performance than the widely used global ranking method as
well as collaborative filtering. This work not only provides a creditable
method in compressing bipartite networks, but also highlights a possible way
for the better solution of a long-standing challenge in modern information
science: How to do personal recommendation?Comment: 7 pages, 4 figure
The reinforcing influence of recommendations on global diversification
Recommender systems are promising ways to filter the overabundant information
in modern society. Their algorithms help individuals to explore decent items,
but it is unclear how they allocate popularity among items. In this paper, we
simulate successive recommendations and measure their influence on the
dispersion of item popularity by Gini coefficient. Our result indicates that
local diffusion and collaborative filtering reinforce the popularity of hot
items, widening the popularity dispersion. On the other hand, the heat
conduction algorithm increases the popularity of the niche items and generates
smaller dispersion of item popularity. Simulations are compared to mean-field
predictions. Our results suggest that recommender systems have reinforcing
influence on global diversification.Comment: 6 pages, 6 figure
Utilizing Online Social Network and Location-Based Data to Recommend Products and Categories in Online Marketplaces
Recent research has unveiled the importance of online social networks for
improving the quality of recommender systems and encouraged the research
community to investigate better ways of exploiting the social information for
recommendations. To contribute to this sparse field of research, in this paper
we exploit users' interactions along three data sources (marketplace, social
network and location-based) to assess their performance in a barely studied
domain: recommending products and domains of interests (i.e., product
categories) to people in an online marketplace environment. To that end we
defined sets of content- and network-based user similarity features for each
data source and studied them isolated using an user-based Collaborative
Filtering (CF) approach and in combination via a hybrid recommender algorithm,
to assess which one provides the best recommendation performance.
Interestingly, in our experiments conducted on a rich dataset collected from
SecondLife, a popular online virtual world, we found that recommenders relying
on user similarity features obtained from the social network data clearly
yielded the best results in terms of accuracy in case of predicting products,
whereas the features obtained from the marketplace and location-based data
sources also obtained very good results in case of predicting categories. This
finding indicates that all three types of data sources are important and should
be taken into account depending on the level of specialization of the
recommendation task.Comment: 20 pages book chapte
YourMOOC4all: a recommender system for MOOCs based on collaborative filtering implementing UDL
YourMOOC4all is a pilot research project to collect feedback requests regarding accessible design for Massive Open Online Courses (MOOCs). In this online application, a specific website offers the possibility for any learner to freely judge if a particular MOOC complies Universal Design for Learning (UDL) principles. User feedback is of great value for the future development of MOOC platforms and MOOC educational resources, as it will help to follow De-sign for All guidelines. YourMOOC4all is a recommender system which gathers valuable information directly from learners to improve aspects such as the quality, accessibility and usability of this online learning environment. The final objective of collecting user’s feedback is to advice MOOC providers about the missing means for meeting learner needs. This paper describes the pedagogical and technological background of YourMOOC4all and its use cases
CHESTNUT: Improve serendipity in movie recommendation by an Information Theory-based collaborative filtering approach
The term serendipity has been understood narrowly in the Recommender System. Applying a user-centered approach, user-friendly serendipitous recommender systems are expected to be developed based on a good understanding of serendipity. In this paper, we introduce CHESTNUT , a memory-based movie collaborative filtering system to improve serendipity performance. Relying on a proposed Information Theory-based algorithm and previous study, we demonstrate a method of successfully injecting insight, unexpectedness and usefulness, which are key metrics for a more comprehensive understanding of serendipity, into a practical serendipitous runtime system. With lightweight experiments, we have revealed a few runtime issues and further optimized the same. We have evaluated CHESTNUT in both practicability and effectiveness , and the results show that it is fast, scalable and improves serendip-ity performance significantly, compared with mainstream memory-based collaborative filtering. The source codes of CHESTNUT are online at https://github.com/unnc-idl-ucc/CHESTNUT/
Emergence of scale-free leadership structure in social recommender systems
The study of the organization of social networks is important for
understanding of opinion formation, rumor spreading, and the emergence of
trends and fashion. This paper reports empirical analysis of networks extracted
from four leading sites with social functionality (Delicious, Flickr, Twitter
and YouTube) and shows that they all display a scale-free leadership structure.
To reproduce this feature, we propose an adaptive network model driven by
social recommending. Artificial agent-based simulations of this model highlight
a "good get richer" mechanism where users with broad interests and good
judgments are likely to become popular leaders for the others. Simulations also
indicate that the studied social recommendation mechanism can gradually improve
the user experience by adapting to tastes of its users. Finally we outline
implications for real online resource-sharing systems
Heterogeneity, quality, and reputation in an adaptive recommendation model
Recommender systems help people cope with the problem of information
overload. A recently proposed adaptive news recommender model [Medo et al.,
2009] is based on epidemic-like spreading of news in a social network. By means
of agent-based simulations we study a "good get richer" feature of the model
and determine which attributes are necessary for a user to play a leading role
in the network. We further investigate the filtering efficiency of the model as
well as its robustness against malicious and spamming behaviour. We show that
incorporating user reputation in the recommendation process can substantially
improve the outcome
- …