175 research outputs found

    Heat Conduction Process on Community Networks as a Recommendation Model

    Get PDF
    Using heat conduction mechanism on a social network we develop a systematic method to predict missing values as recommendations. This method can treat very large matrices that are typical of internet communities. In particular, with an innovative, exact formulation that accommodates arbitrary boundary condition, our method is easy to use in real applications. The performance is assessed by comparing with traditional recommendation methods using real data.Comment: 4 pages, 2 figure

    Improving information filtering via network manipulation

    Get PDF
    Recommender system is a very promising way to address the problem of overabundant information for online users. Though the information filtering for the online commercial systems received much attention recently, almost all of the previous works are dedicated to design new algorithms and consider the user-item bipartite networks as given and constant information. However, many problems for recommender systems such as the cold-start problem (i.e. low recommendation accuracy for the small degree items) are actually due to the limitation of the underlying user-item bipartite networks. In this letter, we propose a strategy to enhance the performance of the already existing recommendation algorithms by directly manipulating the user-item bipartite networks, namely adding some virtual connections to the networks. Numerical analyses on two benchmark data sets, MovieLens and Netflix, show that our method can remarkably improve the recommendation performance. Specifically, it not only improve the recommendations accuracy (especially for the small degree items), but also help the recommender systems generate more diverse and novel recommendations.Comment: 6 pages, 5 figure

    How to project a bipartite network?

    Get PDF
    The one-mode projecting is extensively used to compress the bipartite networks. Since the one-mode projection is always less informative than the bipartite representation, a proper weighting method is required to better retain the original information. In this article, inspired by the network-based resource-allocation dynamics, we raise a weighting method, which can be directly applied in extracting the hidden information of networks, with remarkably better performance than the widely used global ranking method as well as collaborative filtering. This work not only provides a creditable method in compressing bipartite networks, but also highlights a possible way for the better solution of a long-standing challenge in modern information science: How to do personal recommendation?Comment: 7 pages, 4 figure

    The reinforcing influence of recommendations on global diversification

    Get PDF
    Recommender systems are promising ways to filter the overabundant information in modern society. Their algorithms help individuals to explore decent items, but it is unclear how they allocate popularity among items. In this paper, we simulate successive recommendations and measure their influence on the dispersion of item popularity by Gini coefficient. Our result indicates that local diffusion and collaborative filtering reinforce the popularity of hot items, widening the popularity dispersion. On the other hand, the heat conduction algorithm increases the popularity of the niche items and generates smaller dispersion of item popularity. Simulations are compared to mean-field predictions. Our results suggest that recommender systems have reinforcing influence on global diversification.Comment: 6 pages, 6 figure

    Utilizing Online Social Network and Location-Based Data to Recommend Products and Categories in Online Marketplaces

    Full text link
    Recent research has unveiled the importance of online social networks for improving the quality of recommender systems and encouraged the research community to investigate better ways of exploiting the social information for recommendations. To contribute to this sparse field of research, in this paper we exploit users' interactions along three data sources (marketplace, social network and location-based) to assess their performance in a barely studied domain: recommending products and domains of interests (i.e., product categories) to people in an online marketplace environment. To that end we defined sets of content- and network-based user similarity features for each data source and studied them isolated using an user-based Collaborative Filtering (CF) approach and in combination via a hybrid recommender algorithm, to assess which one provides the best recommendation performance. Interestingly, in our experiments conducted on a rich dataset collected from SecondLife, a popular online virtual world, we found that recommenders relying on user similarity features obtained from the social network data clearly yielded the best results in terms of accuracy in case of predicting products, whereas the features obtained from the marketplace and location-based data sources also obtained very good results in case of predicting categories. This finding indicates that all three types of data sources are important and should be taken into account depending on the level of specialization of the recommendation task.Comment: 20 pages book chapte

    A Hybrid Approach for Improving Prediction Coverage of Collaborative Filtering

    Full text link

    YourMOOC4all: a recommender system for MOOCs based on collaborative filtering implementing UDL

    Get PDF
    YourMOOC4all is a pilot research project to collect feedback requests regarding accessible design for Massive Open Online Courses (MOOCs). In this online application, a specific website offers the possibility for any learner to freely judge if a particular MOOC complies Universal Design for Learning (UDL) principles. User feedback is of great value for the future development of MOOC platforms and MOOC educational resources, as it will help to follow De-sign for All guidelines. YourMOOC4all is a recommender system which gathers valuable information directly from learners to improve aspects such as the quality, accessibility and usability of this online learning environment. The final objective of collecting user’s feedback is to advice MOOC providers about the missing means for meeting learner needs. This paper describes the pedagogical and technological background of YourMOOC4all and its use cases

    CHESTNUT: Improve serendipity in movie recommendation by an Information Theory-based collaborative filtering approach

    Get PDF
    The term serendipity has been understood narrowly in the Recommender System. Applying a user-centered approach, user-friendly serendipitous recommender systems are expected to be developed based on a good understanding of serendipity. In this paper, we introduce CHESTNUT , a memory-based movie collaborative filtering system to improve serendipity performance. Relying on a proposed Information Theory-based algorithm and previous study, we demonstrate a method of successfully injecting insight, unexpectedness and usefulness, which are key metrics for a more comprehensive understanding of serendipity, into a practical serendipitous runtime system. With lightweight experiments, we have revealed a few runtime issues and further optimized the same. We have evaluated CHESTNUT in both practicability and effectiveness , and the results show that it is fast, scalable and improves serendip-ity performance significantly, compared with mainstream memory-based collaborative filtering. The source codes of CHESTNUT are online at https://github.com/unnc-idl-ucc/CHESTNUT/

    Emergence of scale-free leadership structure in social recommender systems

    Get PDF
    The study of the organization of social networks is important for understanding of opinion formation, rumor spreading, and the emergence of trends and fashion. This paper reports empirical analysis of networks extracted from four leading sites with social functionality (Delicious, Flickr, Twitter and YouTube) and shows that they all display a scale-free leadership structure. To reproduce this feature, we propose an adaptive network model driven by social recommending. Artificial agent-based simulations of this model highlight a "good get richer" mechanism where users with broad interests and good judgments are likely to become popular leaders for the others. Simulations also indicate that the studied social recommendation mechanism can gradually improve the user experience by adapting to tastes of its users. Finally we outline implications for real online resource-sharing systems

    Heterogeneity, quality, and reputation in an adaptive recommendation model

    Get PDF
    Recommender systems help people cope with the problem of information overload. A recently proposed adaptive news recommender model [Medo et al., 2009] is based on epidemic-like spreading of news in a social network. By means of agent-based simulations we study a "good get richer" feature of the model and determine which attributes are necessary for a user to play a leading role in the network. We further investigate the filtering efficiency of the model as well as its robustness against malicious and spamming behaviour. We show that incorporating user reputation in the recommendation process can substantially improve the outcome
    • …
    corecore