334 research outputs found

    Coexistence of Superconductivity and Spin Density Wave orderings in the organic superconductor (TMTSF)_2PF_6

    Full text link
    The phase diagram of the organic superconductor (TMTSF)_2PF_6 has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K) for the stabilisation of the superconducting ground state featuring a coexistence regime between spin density wave (SDW) and superconductivity (SC). The inhomogeneous character of the said pressure domain is supported by the analysis of the resistivity between T_SDW and T_SC and the superconducting critical current. The onset temperature T_SC is practically constant (1.20+-0.01 K) in this region where only the SC/SDW domain proportion below T_SC is increasing under pressure. An homogeneous superconducting state is recovered above the critical pressure with T_SC falling at increasing pressure. We propose a model comparing the free energy of a phase exhibiting a segregation between SDW and SC domains and the free energy of homogeneous phases which explains fairly well our experimental findings.Comment: 13 pages, 10 figures, revised v: fig.9 added, section 4.2 rewritten, accepted v: sections 4&5 improve

    The Bi-O-edge wavefront sensor: How Foucault-knife-edge variants can boost eXtreme Adaptive Optics

    Full text link
    Direct detection of exoplanets around nearby stars requires advanced Adaptive Optics (AO) systems. High order systems are needed to reach high Strehl Ratio (SR) in near infrared and optical wavelengths on future Giant Segmented Mirror Telescopes (GSMTs). Direct detection of faint exoplanets with the ESO ELT will require some tens of thousand of correction modes. Resolution and sensitivity of the wavefront sensor (WFS) are key requirements for this science case. We present a new class of WFSs, the Bi-Orthogonal Foucault-knife-edge Sensors (or Bi-O-edge), that is directly inspired by the Foucault knife edge test (Foucault 1859). The idea consists of using a beam-splitter producing two foci, each of which is sensed by an edge with orthogonal direction to the other. We describe two implementation concepts: The Bi-O-edge sensor can be realised with a sharp edge and a tip-tilt modulation device (sharp Bi-O-edge) or with a smooth gradual transmission over a grey edge (grey Bi-O-edge). A comparison between the Bi-O-edge concepts and the 4-sided classical Pyramid Wavefront Sensor (PWS) gives some important insights into the nature of the measurements.Our analysis shows that the sensitivity gain of the Bi-O edge with respect to the PWS depends on the system configuration. The gain is a function of the number of control modes and the modulation angle. We found that for the sharp Bi-O-edge, the gain in reduction of propagated photon noise variance approaches a theoretical factor of 2 for a large number of control modes and small modulation angle, meaning that the sharp Bi-O-edge only needs half of the photons of the PWS to reach similar measurement accuracy.Comment: Accepted for publication in Astronomy and Astrophysic

    The Informal Politics of Legislation: Explaining Secluded Decision-Making in the European Union

    Get PDF
    This article investigates a widespread yet understudied trend in EU politics: the shift of legislative decision making from public inclusive to informal se- cluded arenas and the subsequent adoption of legislation as “early agree- ments.” Since its introduction in 1999, “fast-track legislation” has increased dramatically, accounting for 72% of codecision files in the Sixth European Parliament. Drawing from functionalist institutionalism, distributive bargain- ing theory, and sociological institutionalism, this article explains under what conditions informal decision making is likely to occur. The authors test their hypotheses on an original data set of all 797 codecision files negotiated between mid-1999 and mid-2009. Their analysis suggests that fast-track leg- islation is systematically related to the number of participants, legislative workload, and complexity. These findings back a functionalist argument, emphasizing the transaction costs of intraorganizational coordination and in- formation gathering. However, redistributive and salient acts are regularly decided informally, and the Council presidency’s priorities have no significant effect on fast-track legislation. Hence, the authors cannot confirm explana- tions based on issue properties or actors’ privileged institutional positions. Finally, they find a strong effect for the time fast-track legislation has been used, suggesting socialization into interorganizational norms of cooperation

    Novel Phases in the Field Induced Spin Density Wave State in (TMTSF)_2PF_6

    Get PDF
    Magnetoresistance measurements on the quasi one-dimensional organic conductor (TMTSF)_2PF_6 performed in magnetic fields B up to 16T, temperatures T down to 0.12K and under pressures P up to 14kbar have revealed new phases on its P-B-T phase diagram. We found a new boundary which subdivides the field induced spin density wave (FISDW) phase diagram into two regions. We showed that a low-temperature region of the FISDW diagram is characterized by a hysteresis behavior typical for the first order transitions, as observed in a number of studies. In contrast to the common believe, in high temperature region of the FISDW phase diagram, the hysteresis and, hence, the first order transitions were found to disappear. Nevertheless, sharp changes in the resistivity slope are observed both in the low and high temperature domains indicating that the cascade of transitions between different subphases exists over all range of the FISDW state. We also found that the temperature dependence of the resistance (at a constant B) changes sign at about the same boundary. We compare these results with recent theoretical models.Comment: LaTex, 4 pages, 4 figure

    Far-ultraviolet aurora identified at comet 67P/ Churyumov-Gerasimenko

    Get PDF
    Having a nucleus darker than charcoal, comets are usually detected from Earth through the emissions from their coma. The coma is an envelope of gas that forms through the sublimation of ices from the nucleus as the comet gets closer to the Sun. In the far-ultraviolet portion of the spectrum, observations of comae have revealed the presence of atomic hydrogen and oxygen emissions. When observed over large spatial scales as seen from Earth, such emissions are dominated by resonance fluorescence pumped by solar radiation. Here, we analyse atomic emissions acquired close to the cometary nucleus by the Rosetta spacecraft and reveal their auroral nature. To identify their origin, we undertake a quantitative multi-instrument analysis of these emissions by combining coincident neutral gas, electron and far-ultraviolet observations. We establish that the atomic emissions detected from Rosetta around comet 67P/Churyumov-Gerasimenko at large heliocentric distances result from the dissociative excitation of cometary molecules by accelerated solar-wind electrons (and not by electrons produced from photo-ionization of cometary molecules). Like the discrete aurorae at Earth and Mars, this cometary aurora is driven by the interaction of the solar wind with the local environment. We also highlight how the oxygen line O I at wavelength 1,356 Å could be used as a tracer of solar-wind electron variability

    Reduction in Hospital System Opioid Prescribing for Acute Pain Through Default Prescription Preference Settings: Pre-Post Study

    Get PDF
    BACKGROUND: The United States is in an opioid epidemic. Passive decision support in the electronic health record (EHR) through opioid prescription presets may aid in curbing opioid dependence. OBJECTIVE: The objective of this study is to determine whether modification of opioid prescribing presets in the EHR could change prescribing patterns for an entire hospital system. METHODS: We performed a quasi-experimental retrospective pre-post analysis of a 24-month period before and after modifications to our EHR\u27s opioid prescription presets to match Centers for Disease Control and Prevention guidelines. We included all opioid prescriptions prescribed at our institution for nonchronic pain. Our modifications to the EHR include (1) making duration of treatment for an opioid prescription mandatory, (2) adding a quick button for 3 days\u27 duration while removing others, and (3) setting the default quantity of all oral opioid formulations to 10 tablets. We examined the quantity in tablets, duration in days, and proportion of prescriptions greater than 90 morphine milligram equivalents/day for our hospital system, and compared these values before and after our intervention for effect. RESULTS: There were 78,246 prescriptions included in our study written on 30,975 unique patients. There was a significant reduction for all opioid prescriptions pre versus post in (1) the overall median quantity of tablets dispensed (54 [IQR 40-120] vs 42 [IQR 18-90]; PPP\u3c.001). CONCLUSIONS: Modifications of opioid prescribing presets in the EHR can improve prescribing practice patterns. Reducing duration and quantity of opioid prescriptions could reduce the risk of dependence and overdose

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF

    Origin and trends in NH4+ observed in the coma of 67P

    Get PDF
    The European Space Agency/Rosetta mission escorted comet 67P/Churyumov–Gerasimenko and witnessed the evolution of its coma from low activity (∌2.5–3.8 au) to rich ion-neutral chemistry (∌1.2–2.0 au). We present an analysis of the ion composition in the coma, focusing on the presence of protonated high proton affinity (HPA) species, in particular NH4+ ⁠. This ion is produced through the protonation of NH3 and is an indicator of the level of ion-neutral chemistry in the coma. We aim to assess the importance of this process compared with other NH4+ sources, such as the dissociation of ammonium salts embedded in dust grains. The analysis of NH4+ has been possible thanks to the high mass resolution of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Double Focusing Mass Spectrometer (ROSINA/DFMS). In this work, we examine the NH4+ data set alongside data from the Rosetta Plasma Consortium instruments, and against outputs from our in-house ionospheric model. We show that increased comet outgassing around perihelion yields more detections of NH4+ and other protonated HPA species, which results from more complex ion-neutral chemistry occurring in the coma. We also reveal a link between the low magnetic field strength associated with the diamagnetic cavity and higher NH4+ counts. This suggests that transport inside and outside the diamagnetic cavity is very different, which is consistent with 3D hybrid simulations of the coma: non-radial plasma dynamics outside the diamagnetic cavity is an important factor affecting the ion composition
    • 

    corecore