177 research outputs found

    Challenges of comprehensive taxon sampling in comparative biology: Wrestling with rosids

    Full text link
    Using phylogenetic approaches to test hypotheses on a large scale, in terms of both species sampling and associated species traits and occurrence data—and doing this with rigor despite all the attendant challenges—is critical for addressing many broad questions in evolution and ecology. However, application of such approaches to empirical systems is hampered by a lingering series of theoretical and practical bottlenecks. The community is still wrestling with the challenges of how to develop species‐level, comprehensively sampled phylogenies and associated geographic and phenotypic resources that enable global‐scale analyses. We illustrate difficulties and opportunities using the rosids as a case study, arguing that assembly of biodiversity data that is scale‐appropriate—and therefore comprehensive and global in scope—is required to test global‐scale hypotheses. Synthesizing comprehensive biodiversity data sets in clades such as the rosids will be key to understanding the origin and present‐day evolutionary and ecological dynamics of the angiosperms.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143800/1/ajb21059.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143800/2/ajb21059_am.pd

    Applying consumer responsibility principle in evaluating environmental load of carbon emissions

    Get PDF
    There is a need for a proper indicator in order to assess the environmental impact of international trade, therefore using the carbon footprint as an indicator can be relevant and useful. The aim of this study is to show from a methodological perspective how the carbon footprint, combined with input- output models can be used for analysing the impacts of international trade on the sustainable use of national resources in a country. The use of the input-output approach has the essential advantage of being able to track the transformation of goods through the economy. The study examines the environmental impact of consumption related to international trade, using the consumer responsibility principle. In this study the use of the carbon footprint and input-output methodology is shown on the example of the Hungarian consumption and the impact of international trade. Moving from a production- based approach in climate policy to a consumption-perspective principle and allocation, would also help to increase the efficiency of emission reduction targets and the evaluation of the ecological impacts of international trade

    Recent advances in understanding the roles of whole genome duplications in evolution

    Get PDF
    Ancient whole-genome duplications (WGDs)—paleopolyploidy events—are key to solving Darwin’s ‘abominable mystery’ of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life

    Evaluating Pillar Industry's Transformation Capability: A Case Study of Two Chinese Steel-Based Cities.

    Get PDF
    Many steel-based cities in China were established between the 1950s and 1960s. After more than half a century of development and boom, these cities are starting to decline and industrial transformation is urgently needed. This paper focuses on evaluating the transformation capability of resource-based cities building an evaluation model. Using Text Mining and the Document Explorer technique as a way of extracting text features, the 200 most frequently used words are derived from 100 publications related to steel- and other resource-based cities. The Expert Evaluation Method (EEM) and Analytic Hierarchy Process (AHP) techniques are then applied to select 53 indicators, determine their weights and establish an index system for evaluating the transformation capability of the pillar industry of China's steel-based cities. Using real data and expert reviews, the improved Fuzzy Relation Matrix (FRM) method is applied to two case studies in China, namely Panzhihua and Daye, and the evaluation model is developed using Fuzzy Comprehensive Evaluation (FCE). The cities' abilities to carry out industrial transformation are evaluated with concerns expressed for the case of Daye. The findings have policy implications for the potential and required industrial transformation in the two selected cities and other resource-based towns

    Viral nanomotors for packaging of dsDNA and dsRNA

    Get PDF
    While capsid proteins are assembled around single-stranded genomic DNA or RNA in rod-shaped viruses, the lengthy double-stranded genome of other viruses is packaged forcefully within a preformed protein shell. This entropically unfavourable DNA or RNA packaging is accomplished by an ATP-driven viral nanomotor, which is mainly composed of two components, the oligomerized channel and the packaging enzymes. This intriguing DNA or RNA packaging process has provoked interest among virologists, bacteriologists, biochemists, biophysicists, chemists, structural biologists and computational scientists alike, especially those interested in nanotechnology, nanomedicine, AAA+ family proteins, energy conversion, cell membrane transport, DNA or RNA replication and antiviral therapy. This review mainly focuses on the motors of double-stranded DNA viruses, but double-stranded RNA viral motors are also discussed due to interesting similarities. The novel and ingenious configuration of these nanomotors has inspired the development of biomimetics for nanodevices. Advances in structural and functional studies have increased our understanding of the molecular basis of biological movement to the point where we can begin thinking about possible applications of the viral DNA packaging motor in nanotechnology and medical applications
    corecore